

 [image: image0]

ANS is an open source ecosystem of inertial measurement unit

A web-based development platform efficiently to build up navigation system

Contents

	Aceinna SAEJ1939 protocol

	Introduction
	Manual Overview

	Overview of the MTLT Series Inertial Systems

	Connections
	Connections

	Power Input and Power Input Ground

	Serial Data Interface

	Alarm

	Installation and Operation of NAV-VIEW
	NAV-VIEW Computer Requirements

	Connections

	Setting up NAV-VIEW

	Data Recording

	Data Playback

	Raw Data Console

	Packet Statistics View

	Unit Configuration

	Advanced Configuration

	Bit Configuration

	Tilt alarm

	Theory of Operation
	MTLT Series Default Coordinate System

	4.2 Dynamic MTLT Theory of Operation

	Tilt Alarm (Independent vs. Cone Angle)

	Application Guide
	Introduction

	Equipment Leveling and lockout

	Aerial Work Platform Safety

	Land Vehicle

	Programming Guide
	General Settings

	Number Formats

	Packet Format

	Communicating with the MTLT1 Series
	Link Test.

	Interactive Commands

	Output Packets (Polled)

	Output Packets (Polled or Continuous)

	Advanced Commands
	Configuration Fields

	Continuous Packet Type Field

	Digital Filter Settings

	Orientation Field

	User Behavior Switches

	Tilt alarm

	Commands to Program Configuration

	Read Fields Command

	Read Fields Response

	Get Fields Command

	Get Fields Response

	Advanced BIT
	Built In Test (BIT) and Status Fields

	Master BIT and Status (BITstatus) Field

	hardwareBIT Field

	hardwarePowerBIT Field

	hardwareEnvironmentalBIT Field

	comBIT Field

	comSerialABIT Field

	softwareBIT Field

	softwareAlgorithmBIT Field

	softwareDataBIT Field

	hardwareStatus Field

	comStatus Field

	softwareStatus Field

	sensorStatus Field

	Configuring the Master Status

	Appendix A. Mechanical Specifications

	Appendix C. Sample Packet-Parser Code
	Overview

	Code listing

	Appendix D. Sample Packet Decoding

	Warranty and Support Information
	Customer Service

	Contact Directory

	Return Procedure

	Warranty

Aceinna SAEJ1939 protocol

[image: image0]

The Application Protocol of Aceinna SAE J1939

REVISION HISTORY

	Revision

	Date

	Author

	Description

	1.0

	Jan 23, 2017

	Feng

	Initial version

	1.1

	Apr 20, 2017

	Feng

	Updated version
upon feedback
from customers

	1.2

	May 17, 2017

	JF

	Formatting

	1.3

	Sept 5, 2017

	Feng / JF

	Add
configuration
tables of MTLT
user’s guide
and Change Name
to Aceinna

	1.3.1

	Sept 6, 2017

	JF

	Updated Packet
Rate Divider
Table

	1.3.2

	Sept 22, 2017

	JF

	Update Data
format
description,
New logo.

	1.3.3

	Sept 25, 2017

	Feng / JF

	Fix typo page 6

	1.3.4

	Mar 15, 2018

	Feng

	Change 5.5.1
and 5.5.2 match
against
firmware

TABLE OF CONTENTS

1 Introduction 4

1.1 Purpose

1.2 Technical assistance

2 Data Unit Definition 5

3 Function Overview 6

4 Packet type 7

5 Function Detail 8

5.1 Command and Status Functions

5.2 Test Functions

5.3 Status

5.4 Configure commands

5.5 Assigning PS Numbers

5.6 Data Packet

6 Address claiming 17

6.1 Non-existence of node address

6.2 Existence of node address

	Introduction

1.1 Purpose

Aceinna J1939 Protocol (AJP) is a communication mechanism used for
resolution of the identification of CAN nodes, configuration, and data
exchange based upon SAE J1939 and the related standards.

It is a request and reply protocol and communicated within the
boundaries of a single CAN network,　never routed internetwork nodes.
The property places AJP into the layer fourth in Open Systems
Interconnection (OSI) model, but not developed into OSI framework.

1.2 Technical assistance

For assistance or clarification on information in this document, submit
a case to Aceinna Inc., www.Aceinna.com [http://www.memsic.com/]

	Data Unit Definition

Unit reports data in standard engineering units as shown in following
table.

	Data
Type

	Name

	**Scaling
**

	Range

	**Offset*
*

	Units

	Pitch /
roll

	Degree

	1/32768

	-250 to
252

	-250

	Deg

	Angular
rate

	Rate of
angular
change

	1/128

	-250 to
250.992

	-250

	Deg/s

	Accelerat
ion

	Linear
accelerat
ion

	0.01

	-320 to
322.55

	-320

	m/s²

TABLE 1: Data Unit Definition

	Function Overview

To execute a command the host controller sends a request packet as:

	Priority

	Base PGN

	PDU format

	PDU specific

	Source Address

	Host Data Field

	6

	59904

	234

	255

	128-247

	

The data field contains the priority, page and PGN of the function to be
executed. The table below summarizes the functions supported and their
base PGN.

	Name

	Ref

	Base PGN

	Description

	Get Version

	5.1.1

	65242

	Requests
firmware
version from
SAE J1939 Node

	Get ECU ID

	5.1.2

	64965

	Requests the
ECU ID

	Algorithm Reset

	5.1.3

	65360

	Resets the
state
estimation
algorithm
without
reloading
fields from
EEPROM

	Save
Configuration

	5.1.4

	65361

	Writes the
current
configuration
into EEPROM

	Test HW

	5.2.1

	65362

	Checks the
status of the
hardware,
software and
sensors on the
specific node

	Test SW

	5.2.2

	65363

	

	Test Status

	5.3

	65364

	Sets parameters
on the specific
node.
Parameters
include:
packets to be
broadcast;
broadcast rate;
orientation;
accelerometer
and rate sensor
filter
settings; user
behavior
switches

	Packet Rate
Divider

	5.4.1

	65365

	Determines the
Broadcast Rate

	Data Packet
Type

	5.4.2

	65366

	Determines the
type of packets
broadcast

	Digital Filter

	5.4.3

	65367

	Set low pass
filter for
acceleration
and rate
sensors

	Orientation

	5.4.4

	65368

	Allows the
orientation to
be changed

	User Behavior
Switches

	5.4.5

	65369

	

	Acceleration
Parameters

	5.4.6

	65373

	Set
acceleration
parameters for
Extended Kalman
Filter

	PS Setting Bank
0

	5.5.1

	65520

	Allows user to
change default
PS for Bank 0
functions

	PS Setting Bank
1

	5.5.2

	65521

	Allows user to
change default
PS for Bank 1
functions

TABLE 2: Function Summary

	Packet type

AJP claims two types of packets among J1939 nodes, as control and data
message.

AJP supports two types of communication methods as SAE J1939 requests,
global and specific.

Global packets may be performed as a sender to all, that all recipients
must reply with a global address.

Specific packets may be used to exchange the operations between sender
and recipient.

	Function Detail

5.1 Command and Status Functions

5.1.1 Version Command:

Type: Global

Host Data Field: 0 Bytes

Host broadcasts a request packet following up SAEJ1939.

Units on the bus respond with PGN message: 0x18FEDASA

	Priority

	Base PGN

	PDU format

	PDU specific

	Source Address

	Data Field

	6

	65242

	254

	218

	128-247

	5 bytes

Version Data Field Description

	Byte 0

	Byte 1

	Byte 2

	Byte 3

	Byte 4

	Major

	Minor

	Patch

	Stage

	Build

5.1.2 ECU ID Command:

Type: Global

Host Data Field: 0 bytes

Units on the bus respond with message: 0x18FDC5SA*

	Priority

	Base PGN

	PDU format

	PDU specific

	Source address

	Data Field

	6

	64965

	253

	197

	128-247

	8 bytes

Data Field Definition follows up Table 1 of SAE J1939-81.

5.1.3 Algorithm Reset Command:

Type: Specific

Host Data Field: 3 Bytes

Response Data Field: 3 Bytes

PS is Host configurable. See section 5.5

Units on the bus respond with message: 00x18FF50SA
(default).

	Priority

	Base PGN

	PDU format

	PDU specific

	Source address

	Data Field

	6

	65360

	255

	80 (Default)

	128-247

	3 bytes

Data Field Definition

	Byte

	Description

	Value

	1

	Request or response

	0x00 = Request (Host)

0x01 = Response (Unit)

	2

	Address of unit being reset

	Address of Unit (128- 247)

	3

	Success or failure

	0x00 = Failure

0x01 = Success

5.1.4 Save Configuration Command:

Type: Specific.

Host Data Field: 3 Bytes.

Response Data Field: 3 Bytes.

PS is Host configurable. See section 5.5.

Units on the bus respond with message: 0x18FF51SA (default).

	Priority

	Base PGN

	PDU format

	PDU specific

	Source address

	Data Field

	6

	65361

	255

	81

	128-247

	3 bytes

Data Field Definition.

	Byte

	Description

	Value

	1

	Request or response

	0x00 = Request (Host)

0x01 = Response (Unit)

	2

	Address of unit being reset

	Address of Unit (128- 247)

	3

	Success or failure

	0x00 = Failure

0x01 = Success

5.2 Test Functions:

5.2.1 Hardware bits:

Type: Broadcast

Host sends out a request command.

Response Data Field: 8 Bytes

Units on the bus respond with message: 0x18FF52SA

	Priority

	Base PGN

	PDU format

	PDU specific

	Source address

	Data Field

	6

	65362

	255

	82

	128-247

	

HW Bits Data Field Definition

	Bit

	Description

	Value

	0

	masterFail

	0 = normal, 1 = fatal error has occurred

	1

	hardwareError

	0 = normal, 1= internal hardware error

	2

	Not Defined

	

	3

	softwareError

	0 = normal, 1 = internal software error

	4

	inpPower

	0 = normal, 1 = out of bounds

	5

	inpCurrent

	0 = normal, 1 = out of bounds

	6

	inpVoltage

	0 = normal, 1 = out of bounds

	7

	fiveVolt

	0 = normal, 1 = out of bounds

	8

	threeVolt

	0 = normal, 1 = out of bounds

	9

	twoVolt

	0 = normal, 1 = out of bounds

	10

	twoFiveRef

	0 = normal, 1 = out of bounds

	11

	sixVolt

	0 = normal, 1 = out of bounds

	12

	grdRef

	0 = normal, 1 = out of bounds

	13

	pcbTemp

	0 = normal, 1 = out of bounds

The signals masterFail and hardwareError are controlled by y various
systems checks in software that are classified into two categories:
hardware and software. Instantaneous soft failures in each of these four
categories will trigger these intermediate signals, but will not trigger
the masterFail until the persistency conditions are met.

There are three intermediate signals that are used to determine when the
masterStatus flag is asserted: hardwareStatus, sensorStatus, and
softwareStatus. masterStatus is the logical OR of these intermediate
signals. Each of these intermediate signals has a separate field with
individual indication flags. Each of these indication flags can be
enabled or disabled by the user. Any enabled indication flag will
trigger the associated intermediate signal and masterStatus flag.

The hardwareError field contains flag that indicate various types of
internal hardware errors.

5.2.2 Software bits:

Type: Specific

Host sends out a request command.

Response Data Field: 1 Byte

Units on the bus respond with message: 0x18FF53SA

	Priority

	Base PGN

	PDU format

	PDU specific

	Source address

	Data Field

	6

	65363

	255

	83

	128-247

	

Software Bits Data Field Definition

	Bit

	Description

	Value

	0

	softwareError

	0 = normal, 1 =
internal software
error

	1

	algorithmError

	0 = normal, 1= error

	2

	dataError

	0 = normal, 1= error

	3

	initialization

	0 = normal, 1 = error
during algorithm
initialization

	4

	overRange

	0 = normal, 1 = fatal
sensor over-range

	5

	missedNavigationStep

	0 = normal, 1 =
deadline missed for
navigation

	6

	calibrationCRCError

	0 = normal, 1 =
incorrect CRC on
calibration EEPROM
data or data has been
compromised by a WE
command.

The softwareError field contains flags that indicate various types of
software errors. Each type has an associated message with low level
error signals. The softwareError flag in the BITstatus field is the
bit-wise OR of algorithm and data error.

The software algorithmError contains flags that indicate various types
of software errors and is the bit-wise OR of initialization, overRange
and missedNavigationStep.

The software DataError contains flags that indicate low level software
data errors, calibrationCRCError.

5.3 Status:

Type: Specific

Host sends out a request command.

Response Data Field: 2 Bytes

Units on the bus respond with message: 0x18FF54SA

	Priority

	Base PGN

	PDU format

	PDU specific

	Source address

	Data Field

	6

	65364

	255

	84

	128-247

	

Software Bits Data Field Definition

	Bit

	Description

	Value

	0

	masterStatus

	0 = nominal, 1 =
hardware, sensor,
com, or software
alert

	1

	hardwareStatus

	0 = nominal, 1 =
programmable alert

	2

	softwareStatus

	0 = nominal, 1 =
programmable alert

	3

	sensorStatus

	0 = nominal, 1 =
programmable alert

	4

	unlocked1PPS

	0 = not asserted, 1 =
asserted

	5

	unlockedInternalGPS

	0 = not asserted, 1 =
asserted

	6

	noDGPS

	0 = DGPS lock, 1 = no
DGPS

	7

	unlockedEEPROM

	0=locked, WE
disabled, 1=unlocked,
WE enabled

	8

	algorithmInit

	0 = normal, 1 = the
algorithm is in
initialization mode

	9

	highGain

	0 = low gain mode, 1
high gain mode

	10

	attitudeOnlyAlgorithm

	0 = navigation state
tracking, 1 =
attitude only state
tracking

	11

	turnSwitch

	0 = off, 1 = yaw rate
greater than
turnSwitch threshold

	12

	Sensor overRange

	0 = not asserted, 1 =
asserted

The hardwareStatus field contains flags that indicate various internal
hardware conditions and alerts that are not errors or problems and is
the bit-wise OR of the logical AND of bit 4 to 7.

The softwareStatus field contains flags that indicate various software
conditions and alerts that are not errors or problems and is the
bit-wise OR of the logical AND of bit 8 to 11.

The sensorStatus field contains flags that indicate various internal
sensor conditions and alerts that are not errors or problems and is bit
12.

5.4 Configure commands:

5.4.1 Packet rate divider:

	Priority

	Base PGN

	PDU format

	PDU specific

	Source address

	Data Field

	6

	65365

	255

	85

	128-247

	2 bytes

1st byte: destination address

2nd byte is packet rate divider

Packet Rate Divider Field Value Definition

	Byte Value

	Packet Broadcast Rate

	0

	Quite Mode – No Broadcast

	1

	100 Hz (default)

	2

	50 Hz

	4

	25 Hz

	5

	20 Hz

	10

	10 Hz

	20

	5 Hz

	25

	4 Hz

	50

	2 Hz

The default PGN message on CAN bus is 0x18FF55SA and PS is
configurable.

5.4.2 Data packet type:

	Priority

	Base PGN

	PDU format

	PDU specific

	Source address

	Data Field

	6

	65366

	255

	86

	128-247

	2 bytes

1st byte: destination address

2nd byte: Selects which packets to broadcast

bit 1 – slope sensor, bit 2 – angular rate, bit 3 – accelerometer.

The default PGN message on CAN bus is 0x18FF56SA and PS is
configurable.

5.4.3 Digital filter:

	Priority

	Base PGN

	PDU format

	PDU specific

	Source address

	Data Field

	6

	65367

	255

	87

	128-247

	3 bytes

1st byte: destination address

2nd byte is to set low pass cutoff for rate sensors. Cutoff
Frequency choices are 5, 10, 20, and 50Hz

3rd byte is to set low pass cutoff for accelerometers. Cutoff
Frequency choices are 5, 10, 20, and 50Hz

The default PGN message on CAN bus is 0x18FF57SA and PS is
configurable.

5.4.4 Orientation:

	Priority

	Base PGN

	PDU format

	PDU specific

	Source address

	Data Field

	6

	65368

	255

	88

	128-247

	3 bytes

1st byte: destination address

2nd and 3rd bytes determine forward, rightward, and
downward facing sides

The default PGN message on CAN bus is 0x18FF58SA and PS is
configurable.

Orientation Field Byte Value Definition

	Orientation Field Value

	X Axis

	Y Axis

	Z Axis

	0x0000

	+Ux

	+Uy

	+Uz

	0x0009

	-Ux

	-Uy

	+Uz

	0x0023

	-Uy

	+Ux

	+Uz

	0x002A

	+Uy

	-Ux

	+Uz

	0x0041

	-Ux

	+Uy

	-Uz

	0x0048

	+Ux

	-Uy

	-Uz

	0x0062

	+Uy

	+Ux

	-Uz

	0x006B

	-Uy

	-Ux

	-Uz

	0x0085

	-Uz

	+Uy

	+Ux

	0x008C

	+Uz

	-Uy

	+Ux

	0x0092

	+Uy

	+Uz

	+Ux

	0x009B

	-Uy

	-Uz

	+Ux

	0x00C4

	+Uz

	+Uy

	-Ux

	0x00CD

	-Uz

	-Uy

	-Ux

	0x00D3

	-Uy

	+Uz

	-Ux

	0x00DA

	+Uy

	-Uz

	-Ux

	0x0111

	-Ux

	+Uz

	+Uy

	0x0118

	+Ux

	-Uz

	+Uy

	0x0124

	+Uz

	+Ux

	+Uy

	0x012D

	-Uz

	-Ux

	+Uy

	0x0150

	+Ux

	+Uz

	-Uy

	0x0159

	-Ux

	-Uz

	-Uy

	0x0165

	-Uz

	+Ux

	-Uy

	0x016C

	+Uz

	-Ux

	-Uy

[image: image1]

Figure: Default Orientation

5.4.5 User behavior switches:

	Priority

	Base PGN

	PDU format

	PDU specific

	Source address

	Data Field

	6

	65369

	255

	89

	128-247

	

1st byte: destination address

2nd and 3rd bytes are to set Restart on Over-range and
Dynamic Motion.

The default PGN message on CAN bus is 0x18FF59SA and PS is
configurable

Bit definition for User Behavior Switches

	Bit

	Description

	Value

	0

	Free Integrate

	0 = use feedback to
stabilize the
algorithm

	1

	Use Mags

	1 = 6DOF inertial
integration without
stabilized feedback
for 60 seconds

	2

	Use GPS

	N/A

	3

	Stationary Yaw Lock

	N/A

	4

	Restart on Over-range

	N/A

	5

	Dynamic Motion

	0 = Do not restart
the system after a
sensor over-range

5.4.6 Acceleration parameters (optional):

	Priority

	Base PGN

	PDU format

	PDU specific

	Source address

	Data Field

	6

	65373

	255

	93

	128-247

	

1st byte: destination address

2nd to 7th bytes are 16-bit x, y and z acceleration
parameters for the EKF coming from host side.

The default PGN message on CAN bus is 0x18FF5DSA and PS is
configurable.

5.5 Assigning PS Numbers

5.5.1 Bank0 of PS numbers:

	Priority

	Base PGN

	PDU format

	PDU specific

	Source address

	Data Field

	6

	65520

	255

	240

	128-247

	

8-byte payload indicates PS numbers instead of default values declared
in this doc.

Byte 0: algorithm reset, byte 1: reserved, byte 2: hardware bits, byte
3: software bits, byte 4: status, byte 5–7: reserved.

PGN message on CAN bus is 0x18FFF0SA.

5.5.2 Bank1 of PS numbers:

	Priority

	Base PGN

	PDU format

	PDU specific

	Source address

	Data Field

	6

	65521

	255

	241

	128-247

	

Byte 0: packet rate, byte 1: packet type, byte 2: digital filter, byte
3: orientation, byte 4-7: reserved.

PGN message on CAN bus is 0x18FFF1SA.

The pool of PS values should be from decimal 80 to 111.

5.6 Data Packet

5.6.1 Slope sensor information 2:

	Priority

	Base PGN

	PDU format

	PDU specific

	Source address

	Data Field

	6

	61481

	240

	41

	128-247

	

PGN message on CAN bus is 0xCF029SA

The format follows up the definition of slope sensor information 2 in
J1939DA_201702.

The first 24-bit indicates pitch and the next 24-bit indicates roll,
little-endian.

	SLOT Id

	Slot Name

	Scaling

	Range

	Offset

	Length

	294

	SAEad11

	1/32768 deg/bit

	-250 to 252 deg

	-250 deg

	3 bytes

5.6.2 Angular rate packet:

	Priority

	Base PGN

	PDU format

	PDU specific

	Source address

	Data Field

	6

	61482

	240

	42

	128-247

	

PGN message on CAN bus is 0xCF02ASA

The format follows up the definition of angular rate information in
J1939DA_201702.

Each 16 bits indicates the angular velocity (rate) of x, y, z, (little
endian).

	SLOT Id

	Slot Name

	Scaling

	Range

	Offset

	Length

	288

	SAEva03

	1/128 deg/s/bit

	-250 to 252 deg/s

	-250 deg/s

	2 bytes

5.6.3 Acceleration sensor packet:

	Priority

	Base PGN

	PDU format

	PDU specific

	Source address

	Data Field

	6

	61485

	240

	45

	128-247

	

PGN message on CAN bus is 0x8F02DSA

The format follows the definition of acceleration sensor information in
J1939DA_201702.

Each 16 bits indicates the acceleration of x, y, z, (little endian),
with LSB = 0.01 m/s/s.

	SLOT Id

	Slot Name

	Scaling

	Range

	Offset

	Length

	303

	SAEad11

	0.01
m/s:sup
:2/bit

	-320 to
322.55
m/s:sup
:2

	–320
m/s:sup
:2

	2 bytes

	Address claiming

6.1 Non-existence of node address:

The node with null address sends out a global request and waits for the
responses from all the nodes on CAN bus. Then, it sends out an address
claim message with a chosen address.

[image: image2]

6.2 Existence of node address:

The node with an existed address sends out an address claim message and
waits for responses from all the nodes on CAN bus, then decides to keep
the address or choose next available address.

[image: image3]

 [image: image0]

	WARNING

This product has been developed by Aceinna exclusively for commercial
applications. It has not been tested for, and Aceinna makes no
representation or warranty as to conformance with, any military
specifications or that the product is appropriate for any military
application or end-use. Additionally, any use of this product for
nuclear, chemical, biological weapons, or weapons research, or for any
use in missiles, rockets, and/or UAV’s of 300km or greater range, or any
other activity prohibited by the Export Administration Regulations, is
expressly prohibited without the written consent of Aceinna and without
obtaining appropriate US export license(s) when required by law.
Diversion contrary to law is prohibited.

©2018 Aceinna, Inc. All rights reserved. Information in this document is
subject to change without notice.

**Table of Contents **

1 Introduction 1

1.1 Manual Overview 1

1.2 Overview of the MTLT Series Inertial Systems
2

2 Connections 3

2.1 Connections 3

2.2 Power Input and Power Input Ground
3

2.3 Serial Data Interface 3

2.4 Alarm 3

3 Installation and Operation of NAV-VIEW
4

3.1 NAV-VIEW Computer Requirements
4

3.1.1 Install NAV-VIEW 4

3.2 Connections 4

3.3 Setting up NAV-VIEW 4

3.4 Data Recording 5

3.5 Data Playback 6

3.6 Raw Data Console 6

3.7 Packet Statistics View 7

3.8 Unit Configuration 8

3.9 Advanced Configuration 9

3.10 Bit Configuration 11

3.11 Tilt alarm 12

3.12 Read Unit Configuration 13

4 Theory of Operation 14

4.1 MTLT Series Default Coordinate System
15

4.1.1 Advanced Settings 16

4.2 Dynamic MTLT Theory of Operation
16

4.2.1 MTLT1xxD Advanced Settings 17

4.2.2 MTLT1xxD Built-In Test 18

4.3 Tilt Alarm (Independent vs. Cone Angle) 19

5 Application Guide 20

5.1 Introduction 20

5.2 Equipment Leveling and lockout
20

5.3 Aerial Work Platform Safety 21

5.4 Land Vehicle 21

6 Programming Guide 22

6.1 General Settings 22

6.2 Number Formats 22

6.3 Packet Format 23

6.3.1 Packet Header 23

6.3.2 Packet Type 23

6.3.3 Payload Length 23

6.3.4 Payload 23

6.3.5 16-bit CRC-CCITT 24

6.3.6 Messaging Overview 24

7 Communicating with the MTLT1 Series
26

7.1 Link Test. 26

7.1.1 Ping Command 26

7.1.2 Ping Response 26

7.1.3 Echo Command 26

7.1.4 Echo Response 26

7.2 Interactive Commands 26

7.2.1 Get Packet Request 26

7.2.2 Algorithm Reset Command 27

7.2.3 Algorithm Reset Response 27

7.2.4 Error Response 27

7.3 Output Packets (Polled) 27

7.3.1 Identification Data Packet 27

7.3.2 Version Data Packet 28

7.3.3 Test 0 (Detailed BIT and Status) Packet
28

7.4 Output Packets (Polled or Continuous)
29

7.4.1 Angle Data Packet 6 (Default Data)
29

7.4.2 Angle Data Packet 7 30

8 Advanced Commands 31

8.1 Configuration Fields 31

8.2 Continuous Packet Type Field 32

8.3 Digital Filter Settings 32

8.4 Orientation Field 32

8.5 User Behavior Switches 34

8.6 Tilt alarm 34

8.7 Commands to Program Configuration
35

8.7.1 Write Fields Command 35

8.7.2 Set Fields Command 36

8.8 Read Fields Command 37

8.9 Read Fields Response 37

8.10 Get Fields Command 37

8.11 Get Fields Response 38

9 Advanced BIT 39

9.1 Built In Test (BIT) and Status Fields
39

9.2 Master BIT and Status (BITstatus) Field
41

9.3 hardwareBIT Field 42

9.4 hardwarePowerBIT Field 42

9.5 hardwareEnvironmentalBIT Field
42

9.6 comBIT Field 42

9.7 comSerialABIT Field 43

9.8 softwareBIT Field 43

9.9 softwareAlgorithmBIT Field 44

9.10 softwareDataBIT Field 44

9.11 hardwareStatus Field 44

9.12 comStatus Field 44

9.13 softwareStatus Field 45

9.14 sensorStatus Field 45

9.15 Configuring the Master Status
45

9.15.1 hardwareStatusEnable Field 45

9.15.2 comStatusEnable Field 46

9.15.3 softwareStatusEnable Field 46

9.15.4 sensorStatusEnable Field 46

10 Appendix A. Mechanical Specifications
47

11 Appendix C. Sample Packet-Parser Code
48

11.1 Overview 48

11.2 Code listing 49

12 Appendix D. Sample Packet Decoding
55

13 Warranty and Support Information
57

13.1 Customer Service 57

13.2 Contact Directory 57

13.3 Return Procedure 57

13.3.1 Authorization 57

13.3.2 Identification and Protection
57

13.3.3 Sealing the Container 58

13.3.4 Marking 58

13.3.5 Return Shipping Address 58

13.4 Warranty 58

** About this Manual**

The following annotations have been used to provide additional
information.

NOTE

Note provides additional information about the topic.

EXAMPLE

Examples are given throughout the manual to help the reader understand
the terminology.

IMPORTANT

This symbol defines items that have significant meaning to the user

[image: warning1] WARNING

The user should pay particular attention to this symbol. It means there
is a chance that physical harm could happen to either the person or the
equipment.

Introduction

Manual Overview

This manual provides a comprehensive introduction to Aceinna’s MTLT
Series industrial tilt sensor products. For users wishing to get started
quickly, please refer to the three page quick start guide included with
each shipment. Table 1 table highlights the content in each section and
suggests how to use this manual.

	Manual Content

	Manual Section

	Who Should Read ?

	
Section 1:

Manual Overview

	
All customers should read

sections 1.1 and 1.2.

	
**Section 2: **

Connections

	
Customers who are connecting the

MTLT Series products into a

system with their own power

supply and cable.

	
**Section 3: **

Installation and Operation of

NAV-VIEW

	
Customers who are installing the

MTLT Series products into a

system and need details on using

NAV-VIEW.

	
**Section 4: **

Theory of Operation

	
All customers should read Section

4.

As the MTLT Series products are

inter-related, use the chart at

the beginning of Section 4 to

ensure that you get an overview

of all of the functions and

features of your MTLT Series

system.

	
**Section 5: **

Application Guide

	
Customers who want product

configuration tips for operating

the MTLT Series tilt sensors in a

wide range of applications.

	
**Section 6-9: **

Programming, Communicating,

Advanced Commands and BIT

	
Customers who wish to communicate

with the MTLT Series system for

sensor data, should review

Section 6 and 7. Section 8 is for
users who wish to configure the
MTLT Series operating parameters
(e.g., baud rate or power-up
output rate) without NAV-VIEW.

Overview of the MTLT Series Inertial Systems

This manual provides a comprehensive introduction to the use of Aceinna’s
MTLT Industrial Tilt Sensor products listed in Table 2. This manual is
intended to be used as a detailed technical reference and operating
guide for the MTLT Series. Aceinna’s MTLT Series products combine the
latest in high-performance commercial MEMS (Micro-electromechanical
Systems) sensors and digital signal processing techniques to provide a
small, cost-effective alternative to existing tilt sensors.

	MTLT Series Feature Description

	Series

	Product

	Features

	MTLT1 Series

	MTLT110S

	
Accelerometer based
static tilt sensor.

3-DOF Accelerometer
data plus static Roll

and Pitch, plus a
single pin tilt

alarm. Plastic IP67
Housing with a 1.0

degree
over-temperature

accuracy on static
tilt angles.

	
	MTLT105S

	
Accelerometer based
static tilt sensor.

3-DOF Accelerometer
data plus static Roll

and Pitch, plus a
single pin tilt

alarm. Plastic IP67
Housing with a 0.5

degree
over-temperature

accuracy on static
tilt angles.

	
	MTLT101S

	
Accelerometer based
static tilt sensor.

3-DOF Accelerometer
data plus static Roll

and Pitch, plus a
single pin tilt

alarm. Plastic IP67
Housing with a 0.1

degree
over-temperature

accuracy on static
tilt angles.

	
	MTLT105D

	
Gyro compensated
dynamic tilt sensor.

3-DOF Accelerometer
data, 3-DOF Gyro

data, plus dynamic
Roll and Pitch, plus

a single pin tilt
alarm. Plastic IP67

Housing with a 0.5
degree

over-temperature
accuracy on static

tilt angles and 2.0
degree accuracy on

dynamic tilt angles.

	
	MTLT101D

	
Gyro compensated
dynamic tilt sensor.

3-DOF Accelerometer
data, 3-DOF Gyro

data, plus dynamic
Roll and Pitch, plus

a single pin tilt
alarm. Plastic IP67

Housing with a 0.1
degree

over-temperature
accuracy on static

tilt angles and 1.0
degree accuracy on

dynamic tilt angles.

The MTLT Series continues in Aceinna’s long history of inertial sensors.
We have 20 years of history building inertial and tilt sensor products.
The MTLT Series comes in both a static (accelerometer only)
configuration for stationary or low speed applications, and a dynamic
(gyro compensated) configuration for mobile applications. Both static
and dynamic configurations use the same high-performance microprocessor
for on-board angle computations, and high-accuracy accelerometers.

The MTLT1 series sensors are housed in a sealed IP67 plastic enclosure
ideal for outdoor or external applications. The MTLT1 uses a standard
RS232 communication protocol for easy integration and a wide 9 – 32 volt
input power range.

In addition to the accelerometers, the dynamic MTLT also includes a
3-axis gyro for dynamic compensation. Traditional accelerometer only
tilt sensors are great in static or slow moving applications where the
linear accelerations are insignificant compared to the Earth’s gravity
vector. However, when placed in a moving vehicle (land, water, or
aerial), the linear accelerations of the vehicle motion can be
interpreted as changes in tilt. With a gyro compensated tilt sensor,
these linear accelerations can be filtered out by the on-board Kalman
filter resulting in an accurate tilt measurement across all dynamic.

Each sensor in the MTLT family includes a tilt alarm. The tilt alarm is
a single pin output that is raised high when the tilt exceeds a user
defined threshold. The user defined threshold can be set using the RS232
port. The tilt alarm is ideal for low-cost applications that may not
include a microprocessor for reading the tilt angles. After the
threshold is set, the alarm pin can be attached directly to a control
relay to lock out equipment when dangerous tilt levels are exceeded, or
simply attached to an LED to give an operator an indication that he/she
is driving on an unsafe incline.

The MTLT Series is supported by Aceinna’s NAV-VIEW, a powerful PC-based
operating tool that provides complete field configuration, diagnostics,
charting of sensor performance, and data logging with playback.

Connections

Connections

The MTLT1 Series has 6 flying leads on a 1 meter long cable

	Connector Pin Assignments

	Color

	Signal

	Red

	Power Input

	Black

	Power Return

	Green

	RS232-RX

	Yellow

	Tilt Alarm

	Orange

	RS232-TX

	Brown

	RS232 Return

The maintain IP67 performance, the user must carefully seal the
terminations of the flying leads.

Power Input and Power Input Ground

Power is applied to the MTLT1 Series sensor on red and black leads. The
black wire is ground; the red wire should have 9 to 32 VDC.

	WARNING

Do not reverse the power leads or damage may occur.

Serial Data Interface

The serial interface is standard RS-232, 9600, 19200, 38400, or 57600
baud, 8 data bits, 1 start bit, 1 stop bit, no parity, and no flow
control and will output at a user configurable output rate. The green
and orange leads are designated as the main RS-232 interface pins. The
serial data settings can be configured on a MTLT1 Series unit with
NAV-VIEW. In order to set the serial data interface, select Unit
Configuration, under the Menu Tab.

Alarm

The Alarm output is normally pulled low by a current sinking transistor.
When the Alarm threshold is exceeded the transistor is turned off and
the output will be pulled high by a 10K 1/16W resistor to the internal
3.3 Volt power supply.

Installation and Operation of NAV-VIEW

NAV-VIEW allows users to control all aspects of the MTLT Series
operation including data recording, definable alarm threshold and data
transfer. In addition you will be able to control the orientation of the
unit, sampling rate, packet type, and filter settings.

NAV-VIEW Computer Requirements

The following are minimum requirements for the installation of the
NAV-VIEW Software:

	CPU: Pentium-class (1.5GHz minimum)

	RAM Memory: 500MB minimum, 1GB+ recommended

	Hard Drive Free Memory: 20MB

	Operating System: Windows 2000™, or XP™, Windows® 7

	Properly installed Microsoft .NET 2.0 or higher

Install NAV-VIEW

To install NAV-VIEW onto your computer:

1. Insert the CD “Inertial Systems Product Support” (Part No.
8160-0063) in the CD-ROM drive.

2. Locate the “NAV-VIEW” folder. Double click on the “setup.exe”
file.

3. Follow the setup wizard instructions. You will install NAV-VIEW
and .NET 2.0 framework.

Connections

The MTLT1 Series Inertial Systems products are shipped flying leads. To
connect to NAV-VIEW the flying leads can be attached to a standard DB9
connector.

	Connect the green lead (RS232-RX) to pin 3 of the DB9 connector

	Connect the orange lead (RS232-TX) to pin 2 of the DB9 connector

	Connect the brown lead (RS232-GND) to pin 5 of the DB9 connector

	Connect the red lead (+) to power supply positive, 9-32VDC

	Connect the black lead (-) to power supply negative

	Connect the yellow lead (Alarm) to oscilloscope or DMM. GND is brown
lead

Note: Allow at least 60 seconds after power up for the MTLT1 Series
product to

initialize. The MTLT1 Series needs to be held motionless during this
period.

[image: warning1] WARNING

Do not reverse the power leads! Reversing the power leads to the
MTLT Series can damage the unit; although there is reverse power
protection, Aceinna is not responsible for resulting damage to the unit
should the reverse voltage protection electronics fail.

Setting up NAV-VIEW

With the MTLT Series product powered up and connected to your PC serial
port, open the NAV-VIEW software application.

1. NAV-VIEW should automatically detect the MTLT Series product and
display the serial number and firmware version if it is connected.

2. If NAV-VIEW does not connect, check that you have the correct COM
port selected. You will find this under the “Setup” menu. Select the
appropriate COM port and allow the unit to automatically match the baud
rate by leaving the “Auto: match baud rate” selection marked.

3. If the status indicator at the bottom is green and states,
[image: UnitConnected], you’re ready to go. If the status indicator doesn’t say
connected and is red, check the connections between the MTLT Series
product and the computer, check the power supply, and verify that the
COM port is not occupied by another device.

4. Under the “View” menu you have several choices of data presentation.
Graph display is the default setting and will provide a real time graph
of all the MTLT Series data. The remaining choices will be discussed in
the following pages.

Data Recording

NAV-VIEW allows the user to log data to a text file (.txt) using the
simple interface at the top of the screen. Customers can now tailor the
type of data, rate of logging and can even establish predetermined
recording lengths.

To begin logging data follow the steps below (See Figure 1):

	Locate the [image: Folder]icon at the top of the page or select “Log to
File” from the “File” drop down menu.

	The following menu will appear.

	Log to File Dialog Screen

[image: LogFile]

	Select the “Browse” box to enter the file name and location that you
wish to save your data to.

	Select the type of data you wish to record. “Engineering Data”
records the converted values provided from the system in engineering
units, “Hex Data” provides the raw hex values separated into columns
displaying the value, and the “Raw Packets” will simply record the
raw hex strings as they are sent from the unit.

	Users can also select a predetermined “Test Duration” from the menu.
Using the arrows, simply select the duration of your data recording.

	Logging Rate can also be adjusted using the features on the right
side of the menu.

	Once you have completed the customization of your data recording, you
will be returned to the main screen where you can start the recording
process using the [image: RecordButton] button at the top of the page or
select “Start Logging” from the “File” menu. Stopping the data
recording can be accomplished using the [image: stop-button] button and the
recording can also be paused using the [image: Pause-button] button.

Data Playback

In addition to data recording, NAV-VIEW allows the user to replay saved
data that has been stored in a log file.

	To playback data, select “Playback Mode” from the “Data Source” drop
down menu at the top. [image: Data-Source]

	Selecting Playback mode will open a text prompt which will allow
users to specify the location of the file they wish to play back. All
three file formats are supported (Engineering, Hex, and Raw) for
playback. In addition, each time recording is stopped/started a new
section is created. These sections can be individually played back by
using the drop down menu and associated VCR controls.

	Once the file is selected, users can utilize the VCR style controls
at the top of the page to start, stop, and pause the playback of the
data.

	NAV-VIEW also provides users with the ability to alter the start time
for data playback. Using the [image: Slidebar] slide bar at the top of the
page users can adjust the starting time.

Raw Data Console

NAV-VIEW offers some unique debugging tools that may assist programmers
in the development process. One such tool is the Raw Data Console. From
the “View” drop down menu, simply select the “Raw Data Console”. This
console provides users with a simple display of the packets that have
been transmitted to the unit (Tx) and the messages received (Rx). An
example is provided in Figure 2.

	Raw Data Console

[image: image10]

Packet Statistics View

Packet statistics can be obtained from the “View” menu by selecting the
“Packet Statistics” option (See Figure 3). This view simply provides the
user with a short list of vital statistics (including Packet Rate, CRC
Failures, and overall Elapsed Time) that are calculated over a one
second window. This tool should be used to gather information regarding
the overall health of the user configuration. Incorrectly configured
communication settings can result in a large number of CRC Failures and
poor data transfer.

	Packet Statistics

[image: PacketStatistics]

Unit Configuration

The Unit Configuration window (See Figure 4) gives the user the ability
to view and alter the system settings. This window is accessed through
the “Unit Configuration” menu item under the configuration menu. Under
the “General” tab, users have the ability to verify the current
configuration by selecting the “Get All Values” button. This button
simply provides users with the currently set configuration of the unit
and displays the values in the left column of boxes.

There are four tabs within the “Unit Configuration” menu; General,
Advanced, BIT Configuration and tilt alarm. The General tab displays
some of the most commonly used settings. The Advanced , BIT
Configuration and tilt alarm menus provide users with more detailed
setting information that they can tailor to meet their specific needs.

To alter a setting, simply select the check box on the left of the value
that you wish to modify and then select the value using the drop down
menu on the right side. Once you have selected the appropriate value,
these settings can be set temporarily or permanently (a software reset
or power cycle is required for the changes to take affect) by selecting
from the choices at the bottom of the dialog box. Once the settings have
been altered a “Success” box will appear at the bottom of the page.

IMPORTANT

Caution must be taken to ensure that the settings selected are
compatible with the system that is being configured. In most cases a
“FAIL” message will appear if incompatible selections are made by the
user, however it is the users responsibility to ensure proper
configuration of the unit.

IMPORTANT

Unit orientation selections must conform to the right hand coordinate
system as noted in Section 4.1 of this user manual. Selecting
orientations that do not conform to this criteria are not allowed.

	Unit Configuration

[image: image12]

Advanced Configuration

Users who wish to access some of the more advanced features of NAV-VIEW
and the MTLT1 Series products can do so by selecting the “Advanced” tab
at the top of the “Unit Configuration” window.

[image: warning1] WARNING

Users are strongly encouraged to read and thoroughly understand the
consequences of altering the settings in the “Advanced” tab before
making changes to the unit configuration. These settings are discussed
in detail in Chapter 4 below.

Behavior switches are identified at the top of the page with marked
boxes. A blue box will appear if a switch has been enabled similar to
Figure 5 below. The values can be set in the same manner as noted in the
previous section. To set a value, users select the appropriate “Modify”
checkbox on the left side of the menu and select or enable the
appropriate value they wish to set. At the bottom of the page, users
have the option of temporarily or permanently setting values. When all
selections have been finalized, simply press the “Set Values” button to
change the selected settings.

	Advanced Settings

[image: image13]

Bit Configuration

The third tab of the unit configuration window is “Bit Configuration”
(See Figure 6). This tab allows the users to alter the logic of
individual status flags that affect the masterStatus flag in the master
BITstatus field (available in most output packets). By enabling
individual status flags users can determine which flags are logically
OR’ed to generate the masterStatus flag. This gives the user the
flexibility to listen to certain indications that affect their specific
application. The masterFail and all error flags are not configurable.
These flags represent serious errors and should never be ignored.

	BIT Configuration

[image: image14]

Tilt alarm

The final tab of the unit configuration window is “Tilt alarm” (See
Figure 7). This tab allows the users to select alarm source and set
alarm threshold angles with hysteresis.

Tilt alarm selector: independent roll/pitch or cone angle

Alarm limit: alarm upper and lower limits.

Hysteresis: alarm limit hysteresis

Figure 7. Tilt alarm

[image: image15]

Read Unit Configuration

NAV-VIEW allows users to view the current settings and calibration data
for a given MTLT Series unit by accessing the “Read Configuration”
selection from the “Configuration” drop down menu (See Figure 8). From
this dialog, users can print a copy of the unit’s current configuration
and calibration values with the click of a button. Simply select the
“Read” button at the top of the dialog box and upon completion select
the “Print” or “Print Preview” buttons to print a copy to your local
network printer. This information can be helpful when storing hard
copies of unit configuration, replicating the original data sheet and
for troubleshooting if you need to contact Aceinna’s Support Staff.

Figure 8. Read Configuration

[image: image16]

Theory of Operation

This section of the manual covers detailed theory of operation for both
the static and dynamic versions of the MTLT series family.

	MTLT1 Series Overview

	Product

	Features

	Learning More

	MTLT1xxS

	Accelerometer-based static tilt sensor

	Read 4.1 and 4.2

	MTLT1xxD

	Gyro-compensated dynamic tilt sensor

	Read 4.1, 4.2 and 4.3

Figure 9 shows the MTLT Series hardware block diagram. At the core of
the MTLT Series is a high-performance MEMS 3-axis accelerometer. The
dynamic MTLT tilt sensors also include a 3-axis MEMS gyroscope used for
linear acceleration compensation. These sensors are based on rugged,
field proven silicon bulk micromachining technology. Each sensor within
the cluster is individually factory calibrated using Aceinna’s automated
manufacturing process. Sensor errors are compensated for temperature
bias, scale factor, non-linearity and misalignment effects using a
proprietary algorithm from data collected during manufacturing.
Accelerometer, rate gyro, and magnetometer sensor bias shifts over
temperature (-40 0C to +70 0C) are compensated and
verified using calibrated thermal chambers and rate tables. The sensor
data is fed into a high-speed microprocessor which calculates the roll
and pitch data using our proprietary Kalman filters.

Figure 9. MTLT Series Hardware Block Diagram

Figure 10 shows the software block diagram. The accelerometer and gyro
(dynamic only) sensor data is fed into a high speed 200Hz signal
processing chain. Measurement data packets are available at fixed
continuous output rates or on a polled basis.

Figure 10. MTLT Series Software Block Diagram

Figure 9 shows a simplified functional block diagrams for MTLT static
and dynamic sensors. Dynamic sensors include a 3-axis gyro and take
advantage of the Extended Kalman Filter. The common aiding sensor for
the drift correction for the attitude (i.e., roll and pitch only) is a
3-axis accelerometer.

MTLT Series Default Coordinate System

The MTLT Series Inertial System default coordinate system is shown in
Figure 11. As with many elements of the MTLT Series, the coordinate
system is configurable with either NAV-VIEW or by sending the
appropriate serial commands. These configurable elements are known as
Advanced Settings. This section of the manual describes the
default coordinate system settings of the MTLT Series when it leaves the
factory.

With the MTLT Series product connector facing you, and the label facing
up, the axes are defined as follows:

Figure 11. MTLT1 Series Default Coordinate System

[image: image17]

x-axis – from face with connector through the MTLT unit

y-axis – along the face with connector from left to right

z-axis – along the face with the connector from top to bottom

The axes form an orthogonal SAE right-handed coordinate system.
Acceleration is positive when it is oriented towards the positive side
of the coordinate axis. For example, with a MTLT Series product sitting
on a level table, it will measure zero g along the x- and y-axes and -1
g along the z-axis. Normal Force acceleration is directed upward, and
thus will be defined as negative for the MTLT Series z-axis.

The angular rate sensors are aligned with these same axes. The rate
sensors measure angular rotation rate around a given axis. The rate
measurements are labeled by the appropriate axis. The direction of a
positive rotation is defined by the right-hand rule. With the thumb of
your right hand pointing along the axis in a positive direction, your
fingers curl around in the positive rotation direction. For example, if
the MTLT Series product is sitting on a level surface and you rotate it
clockwise on that surface, this will be a positive rotation around the
z-axis. The x- and y-axis rate sensors would measure zero angular rates,
and the z-axis sensor would measure a positive angular rate.

Pitch is defined positive for a positive rotation around the y-axis
(pitch up). Roll is defined as positive for a positive rotation around
the x-axis (roll right). Yaw is defined as positive for a positive
rotation around the z-axis (turn right).

The angles are defined as standard Euler angles using a 3-2-1 system. To
rotate from the body frame to an earth-level frame, roll first, then
pitch, and then yaw.

Advanced Settings

The MTLT Series Inertial Systems have a number of advanced settings that
can be changed. All units support baud rate, power-up output packet
type, output rate, sensor low pass filtering, tilt-alarm configurations,
and custom axes configuration. The units can be configured using
NAV-VIEW, as described in Section 3, and also directly with serial
commands as described in Sections 6-9.

IMPORTANT

The Delta-Theta, Delta-V packet is only recommended for use in
continuous output mode at 5Hz or greater. Polled requests for this
packet will produce values accumulated since the last poll request, and
thus, are subject to overflow (data type wrap around).

4.2 Dynamic MTLT Theory of Operation

The MTLT1xxD supports dynamic roll and pitch measurements that are
stabilized by the using the accelerometers as a long-term gravity
reference and gyro for dynamic motion compensation. At a fixed 200Hz
rate, the MTLT1xxD continuously maintains both the calibrated sensor
(accelerometer and gyro) data as well as the roll and pitch data. As
shown in the software block diagram Figure 10, after the Sensor
Calibration block, the sensor data is passed into an Integration to
Orientation block. The Integration to Orientation block integrates body
frame sensed angular rate to orientation at a fixed 200 times per second
within all of the MTLT1xxD Series products. For improved accuracy and to
avoid singularities when dealing with the cosine rotation matrix, a
quaternion formulation is used in the algorithm to provide attitude
propagation.

As also shown in the software block diagram, the Integration to
Orientation block receives drift corrections from the Extended Kalman
Filter or Drift Correction Module. In general, rate sensors and
accelerometers suffer from bias drift, misalignment errors, acceleration
errors (g-sensitivity), nonlinearity (square terms), and scale factor
errors. The largest error in the orientation propagation is associated
with the rate sensor bias terms. The Extended Kalman Filter (EKF) module
provides an on-the-fly calibration for drift errors, including the rate
sensor bias, by providing corrections to the Integration to Orientation
block and a characterization of the gyro bias state. In the MTLT1xxD,
the internally computed gravity reference vector provides a reference
measurement for the EKF when the MTLT1xxD is in quasi-static motion to
correct roll and pitch angle drift and to estimate the X and Y gyro rate
bias. Because the gravity vector has no horizontal component, the EKF
has no ability to estimate either the yaw angle error or the Z gyro rate
bias. The MTLT1xxD adaptively tunes the EKF feedback in order to best
balance the bias estimation and attitude correction with distortion free
performance during dynamics when the object is accelerating either
linearly (speed changes) or centripetally (false gravity forces from
turns). Because centripetal and other dynamic accelerations are often
associated with yaw rate, the MTLT1xxD maintains a low-passed filtered
yaw rate signal and compares it to the turnSwitch threshold field (user
adjustable). When the user platform to which the MTLT1xxD is attached
exceeds the turnSwitch threshold yaw rate, the MTLT1xxD lowers the
feedback gains from the accelerometers to allow the attitude estimate to
coast through the dynamic situation with primary reliance on angular
rate sensors. This situation is indicated by the
softwareStatusturnSwitch status flag. Using the turn switch maintains
better attitude accuracy during short-term dynamic situations, but care
must be taken to ensure that the duty cycle of the turn switch generally
stays below 10% during the vehicle mission. A high turn switch duty
cycle does not allow the system to apply enough rate sensor bias
correction and could allow the attitude estimate to become unstable.

The MTLT1xxD algorithm has two major phases of operation. The first
phase of operation is the initialization phase. During the
initialization phase, the MTLT1xxD is expected to be stationary or
quasi-static so the EKF weights the accelerometer gravity reference
heavily in order to rapidly estimate the roll and pitch angles, and X, Y
rate sensor bias. The initialization phase lasts approximately 60
seconds, and the initialization phase can be monitored in the
softwareStatus BIT transmitted by default in each measurement packet.
After the initialization phase, the MTLT1xxD operates with lower levels
of feedback (also referred to as EKF gain) from the accelerometers to
continuously estimate and correct for roll and pitch errors, as well as
to estimate X and Y rate sensor bias.

If a user wants to reset the algorithm or re-enter the initialization
phase, sending the algorithm reset command, ‘AR’, will force the
algorithm into the reset phase.

The MTLT1xxD outputs digital measurement data over the RS-232 serial
link at a selectable fixed rate (100, 50, 25, 20, 10, 5 or 2 Hz) or on
as requested basis using the GP, ‘Get Packet’ command.

4.2.1 MTLT1xxD Advanced Settings

In addition to the configurable baud rate, packet rate, axis
orientation, and sensor low-pass filter settings, the MTLT1xxD provides
additional advanced settings which are selectable for tailoring the
MTLT1xxD to a specific application requirements. These MTLT1xxD advanced
settings are shown in Table 10 below:

	MTLT1xxD Series Advanced Settings

	Setting

	Default

	Comments

	Baud Rate

	38400

	
57600, 115200,23040

also available

	Packet Type

	A6

	A7 also available

	Packet Rate

	25Hz

	
This setting sets the
rate at which

selected Packet Type,
packets are output.

If polled mode is
desired, then select

Quiet. If Quiet is
selected, the

MTLT1xxD will only
send measurement

packets in response
to GP commands.

	Orientation

	See

Fig. 12

	
To configure the axis
orientation, select

the desired
measurement for each

axes: NAV-VIEW will
show the

corresponding image
of the MTLT1xxD, so

it easy to visualize
the mode of

operation. See
Section 8.4

Orientation Field
settings for the

twenty four possible
orientation settings.

The default setting
points the connector

AFT.

	Filter Settings (5,
10, 20, 50 Hz)

	20 Hz

	
The low pass filters
are set to a default

of 5Hz for the
accelerometers, and

20 Hz for the angular
rate sensors.

	Freely Integrate

	OFF

	
The Freely Integrate
setting allows a user

to turn the MTLT1xxD
into a ‘free gyro’.

In free gyro mode,
the roll, pitch and

yaw are computed
exclusively from

angular rate with no
kalman filter based

corrections of roll,
pitch, or yaw. When

turned on, there is
no coupling of

acceleration based
signals into the roll

and pitch. As a
result, the roll,

pitch, and yaw
outputs will drift

roughly linearly with
time due to sensor

bias. For best
performance, the

Freely Integrate mode
should be used after

the algorithm has
initialized. This

allows the Kalman
Filter to estimate

the roll and pitch
rate sensor bias

prior to entering the
free gyro mode. Upon

exiting the ‘free
gyro’ mode (OFF), one

of two behaviors will
occur

(1) If the MTLT1xxD
has been in

freely integrate
mode for less
than sixty

seconds, the
algorithm will
resume operation

at normal gain
settings

(2) If the MTLT1xxD
has been in
freely integrate

mode for greater
than sixty
seconds, the

algorithm will
force a reset and
reinitialize with

high gains
automatically.

	Restart On Over
Range

	OFF

	
This setting forces
an algorithm reset

when a sensor over
range occurs i.e., a

rotational rate on
any of the three axes

exceeds the maximum
range. The default

setting is OFF for
the MTLT1xxD.

Algorithm reset
returns the MTLT1xxD

to a high gain state,
where the MTLT1xxD

rapidly estimates the
gyro bias and uses

the accelerometer
feedback heavily.

This setting is
recommended when the

source of over-range
is likely to be

sustained and
potentially much

greater than the rate
sensor operating

limit. Large and
sustained angular

rate over-ranges
result in

unrecoverable errors
in roll and pitch

outputs. An
unrecoverable error

is one where the EKF
can not stabilize the

resulting roll and
pitch reading. If the

over-ranges are
expected to be of

short duration (<1
sec) and a modest

percentage over the
maximum operating

range, it is
recommended that the

restart on over range
setting be turned

off. Handling of an
inertial rate sensor

over-range is
controlled using the

restartOnOverRange
switch. If this

switch is off, the
system will flag the

overRange status flag
and continue to

operate through it.
If this switch is on,

the system will flag
a masterFail error

during an over-range
condition and

continue to operate
with this flag until

a quasi-static
condition is met to

allow for an
algorithm restart.

The quasi-static
condition required is

that the absolute
value of each

low-passed rate
sensor fall below 3

deg/sec to begin
initialization. The

system will then
attempt a normal

algorithm start.

	Dynamic Motion

	ON

	
The default setting
is ON for the

MTLT1xxD. Turning off
the dynamic motion

setting results in a
higher gain state

that uses the
accelerometer

feedback heavily.
During periods of

time when there is
known low dynamic

acceleration, this
switch can be turned

off to allow the
attitude estimate to

quickly stabilize.

	Turn Switch
threshold

	10.0 deg/sec

	
With respect to
centripetal or false

gravity forces from
turning dynamics (or

coordinated turn),
the MTLT1xxD monitors

the yaw-rate. If the
yaw rate exceeds a

given Turnswitch
threshold, the

feedback gains from
the accelerometer

signals for attitude
correction are

reduced because they
are likely corrupted.

	BIT

	
	See 4.3.2

4.2.2 MTLT1xxD Built-In Test

The MTLT1xxD Built-In Test capability allows users of the MTLT1xxD
to monitor health, diagnostic, and system status information of the
unit in real-time. The Built-In Test information consists of a BIT
word (2 bytes) transmitted in every measurement packet. In addition,
there is a diagnostic packet ‘T0’ that can be requested via the Get
Packet ‘GP’ command which contains a complete set of status for each
hardware and software subsystem in the MTLT1xxD. See Sections 6 and
7 for details on the ‘T0’ packet.

The BIT word contained within each measurement packet is detailed
below. The LSB (Least Significant Bit) is the Error byte, and the
MSB (Most Significant Bit) is a Status byte with programmable
alerts. Internal health and status are monitored and communicated in
both hardware and software. The ultimate indication of a fatal
problem is the masterFail flag.

The masterStatus flag is a configurable indication that can be
modified by the user. This flag is asserted as a result of any
asserted alert signals which have been enabled. See Advanced BIT
(Section 9) for details on configuring the masterStatus flags. Table
11 shows the BIT definition and default settings for BIT
programmable alerts in the MTLT1xxD.

	MTLT1xxD Default BIT Status Definition

	BITstatus
Field

	Bits

	Meaning

	Category

	masterFail

	0

	
0 = normal, 1 =

fatal error has
occurred

	BIT

	HardwareError

	1

	
0 = normal, 1=
internal

hardware error

	BIT

	comError

	2

	
0 = normal, 1 =| BIT

communication |
error |

	softwareError

	3

	
0 = normal, 1 =| BIT

internal |
software error |

	Reserved

	4:7

	N/A

	

	masterStatus

	8

	
0 = nominal, 1

= one or more

status alerts

	Status

	hardwareStatus

	9

	Disabled

	Status

	comStatus

	10

	
0 = nominal, 1

= No External

GPS Comm

	Status

	softwareStatus

	11

	
0 = nominal, 1

= Algorithm

Initialization

or High Gain

	Status

	sensorStatus

	12

	
0 = nominal, 1
=

	Status

	Reserved

	13:15

	N/A

	

The MTLT1xxD also allows a user to configure the Status byte within the
BIT message. To configure the word, select the BIT Configuration tab
from the Unit Configuration menu. The dialog box allows selection of
which status types to enable (hardware, software, sensor, and comm).
Aceinna recommends for the vast majority of users, that the default
Status byte for the MTLT1xxD is sufficient. For users, who wish to have
additional visibility to when the MTLT1xxD EFK algorithm estimates that
the MTLT1xxD is turning about its Z or Yaw axis, the softwareStatus bit
can be configured to go high during a turn. In other words, the
turnSwitch will turn on the softwareStatus bit. In the MTLT1xxD, the
turnSwitch is by default set at 10.0 deg/sec about the z-axis.

Tilt Alarm (Independent vs. Cone Angle)

In many safety applications, accurately determining if the vehicle or
equipment is tilted beyond a certain safety threshold is the most
important requirement. The MTLT1 series tilt sensors is designed by be
an all-in-one solution for both static and dynamic safety solutions.

The user can select tilt alarm mode for independent pitch and roll
angles or cone angle through NAV-VIEW. Independent and cone angle are
show in Figure 12.

Figure 12. Independent & Cone Angle

[image: image18] [image: image19]

Independent Cone Angle

Hysteresis: if the tilt exceeds user definable alarm threshold, alarm
will change to high and it will hold the high level until the angle is
less than the user definable clear threshold. The clear threshold is not
user definable value, user can get the clear threshold by calculation.
the formula is : Clear value = +/-(ABS(alarm limit) - hysteresis).
Hysteresis is shown in figure 13.

Figure 13: Hysteresis

[image: image7]

Application Guide

Introduction

This section provides recommended advanced settings for tailoring the
MTLT1 Series of tilt sensors to different types of application and
platform requirements.

Equipment Leveling and lockout

MTLT can be used to level equipment or measure tilt while moving in
heavy construction machinery, oil industry and so on.

The unit can be placed on the boom or chassis, for example, to measure
tilt angle during moving or platform leveling. The measurement provides
improved control while the alarm signal can be used for added protection
and lockout.

[image: image21]

In the oil industry, MTILT can be placed on a pumpjack to measure the
walking beam angle change.

[image: image22]

Aerial Work Platform Safety

To protect the safety of the operator, it is very important to control
and correct the angle of the platform. MTLT can be used to measure and
control the angle of the operator platform, chassis or boom. Multiple
MTLT sensors can be used to measure the change of the angle between the
chassis and boom. The alarm signal can be used for protection and
lockout.

[image: image23]

Land Vehicle

Payload imbalance can adversely affect handling and safety. More and
more trucks use tilt sensors to optimize payload balance; increasing
safety, improving fuel economy and minimizing wear of vehicle
components.

Programming Guide

The MTLT1 Series contains a number of different products which have
different measurement capabilities. Depending on the model you
purchased, various commands and output modes are supported. However, all
models support a common packet structure that includes both command or
input data packets (data sent to the MTLT1 Series) and measurement
output or response packet formats (data sent from the MTLT1 Series).
This section of the manual explains these packet formats as well as the
supported commands. NAV-VIEW also features a number of tools that can
help a user understand the packet types available and the information
contained within the packets. This section of the manual assumes that
the user is familiar with ANSI C programming language and data type
conventions.

For an example of the code required to parse input data packets, please
see refer to Appendix C.

For qualified commercial OEM users, a source code license of NAV-VIEW
can be made available under certain conditions. Please contact your
Aceinna representative for more information.

General Settings

The serial port settings are RS232 with 1 start bit, 8 data bits, no
parity bit, 1 stop bit, and no flow control. Standard baud rates
supported are: 9600, 19200, 38400, and 57600.

Common definitions include:

	A word is defined to be 2 bytes or 16 bits.

	All communications to and from the unit are packets that start with a
single word alternating bit preamble 0x5555. This is the ASCII string
“UU”.

	All multiple byte values are transmitted Big Endian (Most Significant
Byte First).

	All communication packets end with a single word CRC (2 bytes). CRC’s
are calculated on all packet bytes excluding the preamble and CRC
itself. Input packets with incorrect CRC’s will be ignored.

	Each complete communication packet must be transmitted to the MTLT1
Series tilt sensors within a 4 second period.

Number Formats

Number Format Conventions include:

	0x as a prefix to hexadecimal values

	single quotes (‘’) to delimit ASCII characters

	no prefix or delimiters to specify decimal values.

Table 20 defines number formats:

	Number Formats

	Descriptor

	Description

	Size(bytes)

	Comment

	Range

	U1

	
Unsigned

Char

	1

	
	0 to 255

	U2

	
Unsigned

Short

	2

	
	0 to 65535

	U4

	
Unsigned

Int

	4

	
	0 to 2^32-1

	I2

	
Signed

Short

	2

	
2’s

Complement

	-2^15 to
2^15-1

	I2*

	
Signed

Short

	2

	
Shifted 2’s

Complement

	
Shifted to

specified

range

	I4

	
Signed

Int

	4

	
2’s

Complement

	-2^31 to
2^31-1

	F4

	
Floating

Point

	4

	
IEEE754

Single

Precision

	-1*2^127 to
2^127

	SN

	String

	N

	ASCII

	

Packet Format

All of the Input and Output packets, except the Ping command, conform to
the following structure:

	0x5555

	<2-byte
packet type
(U2)>

	<payload
byte-length
(U1)>

	<variable
length
payload>

	<2-byte
CRC (U2)>

The Ping Command does not require a CRC, so a MTLT1 Series unit can be
pinged from a terminal emulator. To Ping a MTLT1 Series unit, type the
ASCII string ‘UUPK’. If properly connected, the MTLT1 Series unit will
respond with ‘PK’. All other communications with the MTLT1 Series unit
require the 2-byte CRC. {Note: A MTLT1 Series unit will also respond to
a ping command using the full packet formation with payload 0 and
correctly calculated CRC. Example: 0x5555504B009ef4 }.

Packet Header

The packet header is always the bit pattern 0x5555.

Packet Type

The packet type is always two bytes long in unsigned short integer
format. Most input and output packet types can be interpreted as a pair
of ASCII characters. As a semantic aid consider the following single
character acronyms:

P = packet

F = fields

Refers to Fields which are settings or data contained in the unit

E = EEPROM

Refers to factory data stored in EEPROM

R = read

Reads default non-volatile fields

G = get

Gets current volatile fields or settings

W = write

Writes default non-volatile fields. These fields are stored in
non-volatile memory and determine the unit’s behavior on power up.
Modifying default fields take effect on the next power up and
thereafter.

S = set

Sets current volatile fields or settings. Modifying current fields
will take effect immediately by modifying internal RAM and are lost
on a power cycle.

Payload Length

The payload length is always a one byte unsigned character with a range
of 0-255. The payload length byte is the length(in bytes) of the
<variable length payload> portion of the packet ONLY, and does not
include the CRC.

Payload

The payload is of variable length based on the packet type.

16-bit CRC-CCITT

Packets end with a 16-bit CRC-CCITT calculated on the entire packet
excluding the 0x5555 header and the CRC field itself. A discussion of
the 16-bit CRC-CCITT and sample code for implementing the computation of
the CRC is included at the end of this document. This 16-bit CRC
standard is maintained by the International Telecommunication Union
(ITU). The highlights are:

Width = 16 bits

Polynomial 0x1021

Initial value = 0xFFFF

No XOR performed on the final value.

See Appendix C for sample code that implements the 16-bit CRC algorithm.

Messaging Overview

Table 21 summarizes the messages available by MTLT1 Series model. Packet
types are assigned mostly using the ASCII mnemonics defined above and
are indicated in the summary table below and in the detailed sections
for each command. The payload byte-length is often related to other data
elements in the packet as defined in the table below. The referenced
variables are defined in the detailed sections following. Output
messages are sent from the MTLT1 Series inertial system to the user
system as a result of a poll request or a continuous packet output
setting. Input messages are sent from the user system to the MTLT1
Series inertial system and will result in an associated Reply Message or
NAK message. Note that reply messages typically have the same *<2-byte
packet type (U2)>* as the input message that evoked it but with a
different payload.

	Message Table

	
ASCII

Mnemonic

	
<2-byte

packet

type

(U2)>

	
<payload

byte-

length

(U1)>

	Description

	Type

	
Products

Available

	Link
Test

	
	
	
	
	

	PK

	0x504B

	0

	
Ping
Command

and
Response

	
Input/

Reply

Message

	ALL

	CH

	0x4348

	N

	
Echo
Command

and
Response

	
Input/

Reply

Message

	ALL

	
Interactive

Commands

	
	
	
	
	

	GP

	0x4750

	2

	
Get
Packet

Request

	
Input

Message

	ALL

	AR

	0x4152

	0

	
Algorithm

Reset

	
Input/

Reply

Message

	ALL

	NAK

	0x1515

	2

	
Error

Response

	
Reply

Message

	ALL

	
Output

Messages:

Status &

Other,

(Polled

Only)

	
	
	
	
	

	ID

	0x4944

	5+N

	ID data

	
Output

Message

	ALL

	VR

	0x5652

	5

	
Version

Data

	
Output

Message

	ALL

	T0

	0x5430

	28

	
Test 0

(Detailed

BIT and

Status)

	
Output

Message

	ALL

	
Output

Messages:

Measurement

Data

(Continuous

or polled)

	
	
	
	
	

	A6

	
	
	
Angle 6

Data

	
Output

Message

	ALL

	A7

	
	
	
Angle 7

Data

	
Output

Message

	ALL

	
Advanced

Commands

	
	
	
	
	

	WF

	0x5746

	
numFields

*4+1

	
Write

Fields

Request

	
Input

Message

	ALL

	WF

	0x5746

	
numFields

*2+1

	
Write

Fields

Response

	
Reply

Message

	ALL

	SF

	0x5346

	
numFields

*4+1

	
Set

Fields

Request

	
Input

Message

	ALL

	SF

	0x5346

	
numFields

*2+1

	
Set

Fields

Response

	
Reply

Message

	ALL

	RF

	0x5246

	
numFields

*2+1

	
Read

Fields

Request

	
Input

Message

	ALL

	RF

	0x5246

	
numFields

*4+1

	
Read

Fields

Response

	
Reply

Message

	ALL

	GF

	0x4746

	
numFields

*2+1

	
Get

Fields

Request

	
Input

Message

	ALL

	GF

	0x4746

	
numFields

*4+1

	
Get

Fields

Response

	
Reply

Message

	ALL

Communicating with the MTLT1 Series

Link Test.

Ping Command

	Ping (‘PK’ = 0x504B)

	
	
	

	Preamble

	Packet Type

	Length

	Termination

	0x5555

	0x504B

	
	

	
	

The ping command has no payload. Sending the ping command will cause the
unit to send a ping response. To facilitate human input from a terminal,
the length and CRC fields are not required. (Example: 0x5555504B009ef4
or 0x5555504B))

Ping Response

	Ping (‘PK’ = 0x504B)

	
	
	

	Preamble

	Packet Type

	Length

	Termination

	0x5555

	0x504B

	0x00

	<CRC (U2)>

The unit will send this packet in response to a ping command.

Echo Command

	Echo (‘CH’ = 0x4348)

	
	
	
	

	Preamble

	Packet Type

	Length

	Payload

	Termination

	0x5555

	0x4348

	N

	<echo payload>

	<CRC (U2)>

The echo command allows testing and verification of the communication
link. The unit will respond with an echo response containing the echo
data. The echo data is N bytes long.

Echo Response

	Echo
Payload

	
	
	
	
	

	Byte
Offset

	Name

	Format

	Scaling

	Units

	Description

	0

	echoData0

	U1

	
	

	
	

	
first
byte of

echo data

	1

	echoData1

	U1

	
	

	
	

	
Second
byte of

echo data

	…

	…

	U1

	
	

	
	

	Echo data

	N-2

	echoData.
..

	U1

	
	

	
	

	
Second to
last byte

of echo
data

	N-1

	echoData…

	U1

	
	

	
	

	
Last byte
of echo

data

Interactive Commands

Interactive commands are used to interactively request data from the
MTLT1 Series, and to calibrate or reset the MTLT1 Series.

Get Packet Request

	Get Packet (‘GP’ = 0x4750)

	
	
	
	

	Preamble

	Packet Type

	Length

	Payload

	Termination

	0x5555

	0x4750

	0x02

	<GP payload>

	<CRC (U2)>

This command allows the user to poll for both measurement packets and
special purpose output packets including ‘T0’, ‘VR’, and ‘ID’.

	GP
Payload

	
	
	
	
	

	Byte
Offset

	Name

	Format

	Scaling

	Units

	Description

	0

	requested
PacketTyp
e

	U2

	
	

	
	

	
The
requested

packet
type

Refer to the sections below for Packet Definitions sent in response to
the ‘GP’ command

Algorithm Reset Command

	Algorithm Reset (‘AR’ = 0x4152)

	
	
	
	

	Preamble

	Packet Type

	Length

	Payload

	Termination

	0x5555

	0x4152

	0x00

	
	

	<CRC (U2)>

This command resets the state estimation algorithm without reloading
fields from EEPROM. All current field values will remain in affect. The
unit will respond with an algorithm reset response.

Algorithm Reset Response

	Algorithm Reset (‘AR’ = 0x4152)

	
	
	

	Preamble

	Packet Type

	Length

	Termination

	0x5555

	0x4152

	0x00

	<CRC (U2)>

The unit will send this packet in response to an algorithm reset
command.

Error Response

	
Error

Response

(ASCII NAK,

NAK =

0x1515)

	
	
	
	

	Preamble

	Packet Type

	Length

	Payload

	Termination

	0x5555

	0x1515

	0x02

	<NAK
payload>

	<CRC (U2)>

The unit will send this packet in place of a normal response to a
faiiledInputPacketType request if it could not be completed
successfully.

	
NAK

Payload

Contents

	
	
	
	
	

	Byte
Offset

	Name

	Format

	Scaling

	Units

	Description

	0

	failedInp
utPacketT
ype

	U2

	
	

	
	

	
the
failed

request

Output Packets (Polled)

The following packet formats are special informational packets which can
be requested using the ‘GP’ command.

Identification Data Packet

	
Identification

Data (‘ID’

= 0x4944)

	
	
	
	

	Preamble

	Packet Type

	Length

	Payload

	Termination

	0x5555

	0x4944

	5+N

	<ID
payload>

	<CRC (U2)>

This packet contains the unit serialNumber and modelString. The
model string is terminated with 0x00. The model string contains the
programmed versionString (8-bit Ascii values) followed by the firmware
part number string delimited by a whitespace.

	ID Payload Contents

	
	
	
	
	

	Byte Offset

	Name

	Format

	Scaling

	Units

	Description

	0

	serialNumber

	U4

	
	

	
	

	Unit serial number

	4

	modelString

	SN

	
	

	
	

	Unit Version String

	4+N

	0x00

	U1

	
	

	
	

	Zero Delimiter

Version Data Packet

	Version Data (‘VR’ = 0x5652)

	
	
	
	

	Preamble

	Packet Type

	Length

	Payload

	Termination

	0x5555

	0x5652

	5

	<VR payload>

	<CRC (U2)>

This packet contains firmware version information. majorVersion
changes may introduce serious incompatibilities. minorVersion changes
may add or modify functionality, but maintain backward compatibility
with previous minor versions. patch level changes reflect bug fixes
and internal modifications with little effect on the user. The build
stage is one of the following: 0=release candidate, 1=development,
2=alpha, 3=beta. The buildNumber is incremented with each engineering
firmware build. The buildNumber and stage for released firmware are
both zero. The final beta candidate is v.w.x.3.y, which is then changed
to v.w.x.0.1 to create the first release candidate. The last release
candidate is v.w.x.0.z, which is then changed to v.w.x.0.0 for release.

	VR
Payload

	
	
	
	
	

	Byte
Offset

	Name

	Format

	Scaling

	Units

	Description

	0

	
major

verion

	U1

	
	

	
	

	
Major

firmware

version

	1

	
minor

version

	U1

	
	

	
	

	
Minor

firmware

version

	2

	patch

	U1

	
	

	
	

	
Patch

level

	3

	stage

	
	

	
	

	
	

	
Development
Stage

(0=release
candidate,

1=develop

2=alpha,

3=beta)

	4

	build
number

	U1

	
	

	
	

	
Build

number

Test 0 (Detailed BIT and Status) Packet

	Test (‘T0’ = 0x5430)

	
	
	
	

	Preamble

	Packet Type

	Length

	Payload

	Termination

	03.3x5555

	0x5430

	0x1C

	<T0 payload>

	<CRC (U2)>

This packet contains detailed BIT and status information. The full BIT
Status details are described in Section 9 of this manual.

	T0
Payload

	
	
	
	
	

	Byte
Offset

	Name

	Format

	Scaling

	Units

	Description

	0

	BITstatus

	U2

	
	

	
	

	
Master
BIT and

Status
Field

	2

	hardware
BIT

	U2

	
	

	
	

	Hardware
BIT Field

	4

	hardware
PowerBIT

	U2

	
	

	
	

	
Hardware
Power BIT

Field

	6

	
hardware

Environme

ntal
|BIT

	U2

	
	

	
	

	
Hardware

Environment

al
| BIT Field

	8

	comBIT

	U2

	
	

	
	

	
	communication

	BIT Field

	10

	
comSerial

ABIT

	U2

	
	

	
	

	
Communicati

on
| Serial A
| BIT Field

	12

	
comSerial

BBIT

	U2

	
	

	
	

	
Communicati

on
| Serial B
| BIT Field

	14

	
software

BIT

	U2

	
	

	
	

	
Software

BIT Field

	16

	
software

Algorithm

BIT

	U2

	
	

	
	

	
Software

Algorithm

BIT Field

	18

	
software

DataBIT

	U2

	
	

	
	

	
Software

Data BIT

Field

	20

	
hardware

Status

	U2

	
	

	
	

	
Hardware

Status

Field

	22

	comStatus

	U2

	
	

	
	

	
Communicati

on
| Status
| Field

	24

	
software

Status

	U2

	
	

	
	

	
Software

Status

Field

	26

	
sensor

Status

	U2

	
	

	
	

	
Sensor

Status

Field

Output Packets (Polled or Continuous)

Angle Data Packet 6 (Default Data)

	
Angle Data

(‘A6’ =
0x4132)

	
	
	
	

	Preamble

	Packet
Type

	Length

	Payload

	Termination

	0x5555

	0x4136

	0x0A

	<A6
payload>

	<CRC (U2)>

This packet contains angle data. Data involving angular measurements
include the factor pi in the scaling and can be interpreted in either
radians or degrees.

Angles: scaled to a range of [-pi,+pi) or [-180 deg to +180 deg).

	A6
Payload

	
	
	
	
	

	Byte
Offset

	Name

	Format

	Scaling

	Units

	
Descriptio

n

	0

	rollAngle

	I2

	2*pi/2^16

[360°/2^1
6]

	Radians

[°]

	Roll
angle

	2

	pitchAngle

	I2

	2*pi/2^16

[360°/2^1
6]

	Radians

[°]

	Pitch
angle

	4

	timeITOW

	U4

	1

	ms

	
DMU ITOW
(sync to
GPS)

Not

Implemented

	8

	BITstatus

	U2

	
	

	
	

	
Master
BIT and

Status

Angle Data Packet 7

	Angle Data (‘A7’ = 0x4137)

	
	
	
	

	Preamble

	Packet Type

	Length

	Payload

	Termination

	0x5555

	0x4137

	0x10

	<A7 payload>

	<CRC (U2)>

This packet contains angle data and selected sensor data scaled in most
cases to a signed 2^16 2’s complement number. Data involving angular
measurements include the factor pi in the scaling and can be interpreted
in either radians or degrees.

Angles: scaled to a range of [-pi,+pi) or [-180 deg to +180 deg).

Accelerometers: scaled to a range of [-10,+10) g

	A7
Payload

	
	
	
	
	

	Byte
Offset

	Name

	Format

	Scaling

	Units

	Description

	0

	rollAngle

	I2

	2*pi/2^16

[360°/2^1
6]

	Radians

[°]

	Roll
angle

	2

	pitchAngl
e

	I2

	2*pi/2^16

[360°/2^1
6]

	Radians

[°]

	Pitch
angle

	4

	xAccel

	I2

	20/2^16

	g

	
X

accelerom

eter

	6

	yAccel

	I2

	20/2^16

	g

	
Y

accelerom

eter

	8

	zAccel

	I2

	20/2^16

	g

	
Z

accelerom

eter

	10

	timeITOW

	U4

	1

	ms

	
DMU ITOW
(sync to
GPS)

Not

Implemented

	14

	BITstatus

	U2

	
	

	
	

	
Master
BIT and

Status

Advanced Commands

The advanced commands allow users to programmatically change the MTLT1
Series settings. This section of the manual documents all of the
settings and options contained under the Unit Configuration tab within
NAV-VIEW. Using these advanced commands, a user’s system can change or
modify the settings without the need for NAV-VIEW.

Configuration Fields

Configuration fields determine various behaviors of the unit that can be
modified by the user. These include settings like baud rate, packet
output rate and type, algorithm type, etc. These fields are stored in
EEPROM and loaded on power up. These fields can be read from the EEPROM
using the ‘RF’ command. These fields can be written to the EEPROM
affecting the default power up behavior using the ‘WF’ command. The
current value of these fields (which may be different from the value
stored in the EEPROM) can also be accessed using the ‘GF’ command. All
of these fields can also be modified immediately for the duration of the
current power cycle using the ‘SF’ command. The unit will always power
up in the configuration stored in the EEPROM. Configuration fields can
only be set or written with valid data from Table 22 below.

	Configuration Fields

	configuration
fields

	field ID

	Valid Values
Values**

	description

	
Packet rate

divider

	0x0001

	
0,1,2,4,5,10,20

25, 50

	
quiet, 100Hz,

50Hz, 25Hz,

20Hz, 10Hz,

5Hz, 4Hz,2Hz

	
Unit BAUD

rate

	0x0002

	,2,3,5,6

	
38400, 57600

115200, 230400

	
Continuous

packet type

	0x0003

	
Any output

packet type

	
Not all output
packets

available for
all products.

See detailed
product

descriptions.

	Unused

	0x0004

	
	

	
Gyro Filter

Setting

	0x0005

	7142-65535
[5Hz]
3571-7141
[10Hz]
1530-3570
[20Hz]
0-1529 [50 Hz]

	
Sets low pass
cutoff for rate

sensors. Cutoff
Frequency

choices are 5,
10, 20, and
50Hz

	
Accelerometer

Filter Setting

	0x0006

	7142-65535
[5Hz]
3571-7141
[10Hz]
1530-3570
[20Hz]
0-1529 [50 Hz]

	
Sets low pass
cutoff for

accelerometers.
Cutoff

Frequency
choices are 5,

10, 20, and
50Hz

	Orientation

	0x0007

	See below

	
Determine
forward,

rightward, and
downward facing

sides

	
User Behavior

Switches

	0x0008

	Any

	
Free Integrate
(60 seconds),

Use Mags, Use
GPS, Stationary

Yaw Lock, …

	
Roll upper

alarm angle

	0x0029

	[-25,25](deg)

	
Roll upper

alarm limit

	
Roll lower

alarm angle

	0x002A

	[-25,25](deg)

	
Roll lower

alarm limit

	
Pitch upper

alarm angle

	0x002B

	[-25,25](deg)

	
Pitch upper

alarm limit

	
Pitch lower

alarm angle

	0x002C

	[-25,25](deg)

	
Pitch lower

alarm limit

	Roll hysteresis

	0x002D

	[1,3](deg)

	
Hysteresis for

roll alarm

	
Pitch

hysteresis

	0x002E

	[1,3](deg)

	
Hysteresis for

pitch alarm

	Alarm selector

	0x002F

	0,1

	
Independent

angle, cone

angle

	
Cone angle

limit

	0x0030

	[-25,25](deg)

	
Cone alarm

limit

	
Cone angle

hysteresis

	0x0031

	[1,3](deg)

	
Hysteresis for

cone angle

Note: BAUD rate SF has immediate effect. Some output data may be lost.
Response will be received at new BAUD rate.

Continuous Packet Type Field

This is the packet type that is being continually output. The supported
packet depends on the model number. Please refer to Section 6.4 for a
complete list of the available packet types.

Digital Filter Settings

These two fields set the digital low pass filter cutoff frequencies (See
Table 23). Each sensor listed is defined in the default factory
orientation. Users must consider any additional rotation to their
intended orientation.

	Digital Filter Settings

	Filter Setting

	Sensor

	FilterGyro

	Ux,Uy,Uz Rate

	FilterAccel

	Ux,Uy,Uz Accel

Orientation Field

This field defines the rotation from the factory to user axis sets. This
rotation is relative to the default factory orientation (connector aft,
baseplate down). The default factory axis setting for the MTLT1
orientation field is (-Ux, -Uy, +Uz) as shown in Figure 15 below. With
this default orientation, +X is defined as opposite where the connector
is pointing, +Z is down through the base, and +Y is created by making
the final orthogonal axis right-hand-rule. The user axis set is (X, Y,
Z) as defined by this default orientation field loaded at the factory,
but this can be changed as per Table 24.

Figure 15. MTLT1 Orientation Field (0x0009)

[image: image24]

	MTLT1 Orientation Definitions

	Description

	Bits

	Meaning

	X Axis Sign

	0

	0 = positive, 1 = negative

	X Axis

	1:2

	0 = Ux, 1 = Uy, 2 = Uz, 3 = N/A

	Y Axis Sign

	3

	0 = positive, 1 = negative

	Y Axis

	4:5

	0 = Uy, 1 = Uz, 2 = Ux, 3 = N/A

	Z Axis Sign

	6

	0 = positive, 1 = negative

	Z Axis

	7:8

	0 = Uz, 1 = Ux, 2 = Uy, 3 = N/A

	Reserved

	9:15

	N/A

There are 24 possible orientation configurations (See Table 25).
Setting/Writing the field to anything else generates a NAK and has no
effect.

	MTLT1 Orientation Fields

	Orientation Field Value

	X Axis

	Y Axis

	Z Axi*

	0x0000

	+Ux

	+Uy

	+Uz

	0x0009

	-Ux

	-Uy

	+Uz

	0x0023

	-Uy

	+Ux

	+Uz

	0x002A

	+Uy

	-Ux

	+Uz

	0x0041

	-Ux

	+Uy

	-Uz

	0x0048

	+Ux

	-Uy

	-Uz

	0x0062

	+Uy

	+Ux

	-Uz

	0x006B

	-Uy

	-Ux

	-Uz

	0x0085

	-Uz

	+Uy

	+Ux

	0x008C

	+Uz

	-Uy

	+Ux

	0x0092

	+Uy

	+Uz

	+Ux

	0x009B

	-Uy

	-Uz

	+Ux

	0x00C4

	+Uz

	+Uy

	-Ux

	0x00CD

	-Uz

	-Uy

	-Ux

	0x00D3

	-Uy

	+Uz

	-Ux

	0x00DA

	+Uy

	-Uz

	-Ux

	0x0111

	-Ux

	+Uz

	+Uy

	0x0118

	+Ux

	-Uz

	+Uy

	0x0124

	+Uz

	+Ux

	+Uy

	0x012D

	-Uz

	-Ux

	+Uy

	0x0150

	+Ux

	+Uz

	-Uy

	0x0159

	-Ux

	-Uz

	-Uy

	0x0165

	-Uz

	+Ux

	-Uy

	0x016C

	+Uz

	-Ux

	-Uy

User Behavior Switches

This field allows on the fly user interaction with behavioral aspects of
the algorithm (See Figure 26).

	MTLT1 Behavior Switches

	Description

	Bits

	Meaning

	Free Integrate

	0

	
0 = use feedback to
stabilize the

algorithm, 1 = 6DOF
inertial integration

without stabilized
feedback for 60

seconds

	Use Mags

	1

	N/A

	Use GPS

	2

	N/A

	Stationary Yaw Lock

	3

	N/A

	Restart on Over-range

	4

	
0 = Do not restart
the system after a

sensor over-range, 1
= restart the system

after a sensor
over-range

	Dynamic Motion

	5

	
0=vehicle is static,
force high gain

corrections, 1=
vehicle is dynamic,

use nominal
corrections

	Reserved

	6:15

	N/A

Tilt alarm

The fields from 0x0029 to 0x0031 allow the users to select alarm source
and set alarm threshold angles with hysteresis.

Commands to Program Configuration

Write Fields Command

	
Write
Fields

(‘WF’ =
0x5746)

	
	
	
	

	Preamble

	Packet Type

	Length

	Payload

	Termination

	0x5555

	0x5746

	1+numFields
*4

	<WF
payload>

	<CRC (U2)>

This command allows the user to write default power-up configuration
fields to the EEPROM. Writing the default configuration will not take
affect until the unit is power cycled. NumFields is the number of
words to be written. The field0, field1, etc. are the field

IDs that will be written with the field0Data, field1Data, etc.,
respectively. The unit will not write to calibration or algorithm
fields. If at least one field is successfully written, the unit will
respond with a write fields response containing the field IDs of the
successfully written fields. If any field is unable to be written, the
unit will respond with an error response. Note that both a write fields
and an error response may be received as a result of a write fields
command. Attempts to write a field with an invalid value is one way to
generate an error response. A table of field IDs and valid field values
is available in Section 8.1.

	WF
Payload

	
	
	
	
	

	Byte
Offset

	Name

	Format

	Scaling

	Units

	
Descripti

on

	0

	numFields

	U1

	
	

	
	

	
The
number of

fields to
write

	1

	field0

	U2

	
	

	
	

	
The first
field ID

to write

	3

	
field0Dat

a

	U2

	
	

	
	

	
The first
field

ID’s data
to write

	5

	field1

	U2

	
	

	
	

	
The
second

field ID
to write

	7

	
field1Dat

a

	U2

	
	

	
	

	
The
second

field
ID’s data

	…

	…

	U2

	
	

	
	

	…

	numFields
*4
-3

	field…

	U2

	
	

	
	

	
The last
field ID

to write

	numFields
*4
-1

	
field…Dat

a

	U2

	
	

	
	

	
The last
field

ID’s data
to write

Write Fields Response

	
Write
Fields

(‘WF’ =
0x5746)

	
	
	
	

	Preamble

	Packet Type

	Length

	Payload

	Termination

	0x5555

	0x5746

	1+numFields
*2

	<WF
payload>

	<CRC (U2)>

The unit will send this packet in response to a write fields command if
the command has completed without errors.

	WF
Payload

	
	
	
	
	

	Byte
Offset

	Name

	Format

	Scaling

	Units

	Descripti
on

	0

	numFields

	U1

	
	

	
	

	
The
number of

fields
written

	1

	field0

	U2

	
	

	
	

	
The first
field ID

written

	3

	field1

	U2

	
	

	
	

	
The
second

field ID
written

	…

	…

	U2

	
	

	
	

	
More
field IDs

written

	numFields
*2
– 1

	Field…

	U2

	
	

	
	

	
The last
field ID

written

Set Fields Command

	
Set Fields

(‘SF’ =
0x5346)

	
	
	
	

	Preamble

	Packet Type

	Length

	Payload

	Termination

	0x5555

	0x5346

	1+numFields
*4

	<SF
payload>

	<CRC (U2)>

This command allows the user to set the unit’s current configuration
(SF) fields immediately which will then be lost on power down.
NumFields is the number of words to be set. The field0, field1,
etc. are the field IDs that will be written with the field0Data,
field1Data, etc., respectively. This command can be used to set
configuration fields. The unit will not set calibration or algorithm
fields. If at least one field is successfully set, the unit will
respond with a set fields response containing the field IDs of the
successfully set fields. If any field is unable to be set, the unit
will respond with an error response. Note that both a set fields and
an error response may be received as a result of one set fields
command. Attempts to set a field with an invalid value is one way to
generate an error response. A table of field IDs and valid field
values is available in Section 8.1.

	SF
Payload

	
	
	
	
	

	Byte
Offset

	Name

	Format

	Scaling

	Units

	
*Descript

ion*

	0

	numFields

	U1

	
	

	
	

	
The
number of

fields to
set

	1

	field0

	U2

	
	

	
	

	
The first
field ID

to set

	3

	
field0Dat

a

	U2

	
	

	
	

	
The first
field

ID’s data
to set

	5

	field1

	U2

	
	

	
	

	
The
second

field ID
to set

	7

	
field1Dat

a

	U2

	
	

	
	

	
The
second
field

ID’s data
to set

	…

	…

	U2

	
	

	
	

	…

	numFields
*4
-3

	field…

	U2

	
	

	
	

	
The last
field ID

to set

	numFields
*4
-1

	
	field…Dat

	a

	U2

	
	

	
	

	
The last
field

ID’s data
to set

Set Fields Response

	
Set Fields

(‘SF’ =
0x5346)

	
	
	
	

	Preamble

	Packet
Type

	Length

	Payload

	
*Terminatio

n*

	0x5555

	0x5346

	1+numFields
*2

	<SF
payload>

	<CRC (U2)>

The unit will send this packet in response to a set fields command if
the command has completed without errors.

	SF
Payload

	
	
	
	
	

	Byte
Offset

	Name

	Format

	Scaling

	Units

	
*Descript

ion*

	0

	numFields

	U1

	
	

	
	

	
The
number of

fields
set

	1

	field0

	U2

	
	

	
	

	
The first
field ID

set

	3

	field1

	U2

	
	

	
	

	
The
second

field ID
set

	…

	…

	U2

	
	

	
	

	
More
field IDs

set

	numFields
*2
- 1

	Field…

	U2

	
	

	
	

	
The last
field ID

set

Read Fields Command

	
Read Fields

(‘RF’ =
0x5246)

	
	
	
	

	Preamble

	Packet
Type

	Length

	Payload

	
*Terminatio

n*

	0x5555

	0x5246

	1+numFields
*2

	<RF
payload>

	<CRC (U2)>

This command allows the user to read the default power-up
configuration fields from the EEPROM. NumFields is the number of
fields to read. The field0, field1, etc. are the field IDs to
read. RF may be used to read configuration and calibration fields
from the EEPROM. If at least one field is successfully read, the
unit will respond with a read fields response containing the field
IDs and data from the successfully read fields. If any field is
unable to be read, the unit will respond with an error response.
Note that both a read fields and an error response may be received
as a result of a read fields command.

	RF
Payload

	
	
	
	
	

	Byte
Offset

	Name

	Format

	Scaling

	Units

	
*Descripti

on*

	0

	numFields

	U1

	
	

	
	

	
The
number of

fields to
read

	1

	field0

	U2

	
	

	
	

	
The first
field ID

to read

	3

	field1

	U2

	
	

	
	

	
The
second

field ID
to read

	…

	…

	U2

	
	

	
	

	
More
field IDs

to read

	numFields
*2
- 1

	Field…

	U2

	
	

	
	

	
The last
field ID

to read

Read Fields Response

	
Read Fields

(‘RF’ =
0x5246)

	
	
	
	

	Preamble

	Packet
Type

	Length

	Payload

	
*Terminatio

n*

	0x5555

	0x5246

	1+numFields
*4

	<RF
payload>

	<CRC (U2)>

The unit will send this packet in response to a read fields request if
the command has completed without errors.

	RF
Payload

	
	
	
	
	

	Byte
Offset

	Name

	Format

	Scaling

	Units

	
*Descripti

ion*

	0

	numFields

	U1

	
	

	
	

	
The
number of

fields
read

	1

	field0

	U2

	
	

	
	

	
The first
field ID

read

	3

	field0Dat
a

	U2

	
	

	
	

	
The first
field

ID’s data
read

	5

	field1

	U2

	
	

	
	

	
The
second

field ID
read

	7

	field1Dat
a

	U2

	
	

	
	

	
The
second

field
ID’s data

read

	…

	…

	U2

	
	

	
	

	…

	numFields
*4
-3

	field…

	U2

	
	

	
	

	
The last
field ID

read

	numFields
*4
-1

	field…Dat
a

	U2

	
	

	
	

	
The last
field

ID’s data
read

Get Fields Command

	
Get Fields

(‘GF’ =
0x4746)

	
	
	
	

	Preamble

	Packet
Type

	Length

	Payload

	
*Terminatio

n*

	0x5555

	0x4746

	1+numFields
*2

	<GF Data>

	<CRC (U2)>

This command allows the user to get the unit’s current configuration
fields. NumFields is the number of fields to get. The field0,
field1, etc. are the field IDs to get. GF may be used to get
configuration, calibration, and algorithm fields from RAM. Multiple
algorithm fields will not necessarily be from the same algorithm
iteration. If at least one field is successfully collected, the unit
will respond with a get fields response with data containing the
field IDs of the successfully received fields. If any field is
unable to be received, the unit will respond with an error response.
Note that both a get fields and an error response may be received as
the result of a get fields command.

	GF
Payload

	
	
	
	
	

	Byte
Offset

	Name

	Format

	Scaling

	Units

	
Descriptio

n

	0

	numFields

	U1

	
	

	
	

	
The
number of

fields to
get

	1

	field0

	U2

	
	

	
	

	
The first
field ID

to get

	3

	field1

	U2

	
	

	
	

	
The
second

field ID
to get

	…

	…

	U2

	
	

	
	

	
More
field IDs

to get

	numFields
*2
– 1

	Field…

	U2

	
	

	
	

	
The last
field ID

to get

Get Fields Response

	Get Fields (‘GF’ = 0x4746)

	
	
	
	

	Preamble

	Packet Type

	Length

	Payload

	Termination

	0x5555

	0x4746

	1+numFields*4

	<GF Data>

	<CRC (U2)>

The unit will send this packet in response to a get fields request if
the command has completed without errors.

	GF
Payload

	
	
	
	
	

	Byte
Offset

	Name

	Format

	Scaling

	Units

	
Descriptio

n

	0

	numFields

	U1

	
	

	
	

	
The
number of

fields
retrieved

	1

	field0

	U2

	
	

	
	

	
The first
field ID

retrieved

	3

	field0Dat
a

	U2

	
	

	
	

	
The first
field

ID’s data
retrieved

	5

	field1

	U2

	
	

	
	

	
The
second

field ID
retrieved

	7

	field1Dat
a

	U2

	
	

	
	

	
The
second

field
ID’s data

	…

	…

	U2

	
	

	
	

	…

	numFields
*4
-3

	field…

	U2

	
	

	
	

	
The last
field ID

retrieved

	numFields
*4
-1

	field…Dat
a

	U2

	
	

	
	

	
The last
field

ID’s data
retrieved

Advanced BIT

Built In Test (BIT) and Status Fields

Internal health and status are monitored and communicated in both
hardware and software. The ultimate indication of a fatal problem is a
hardware BIT signal on the user connector which is mirrored in the
software BIT field as the masterFail flag. This flag is thrown as a
result of a number of instantly fatal conditions (known as a “hard”
failure) or a persistent serious problem (known as a “soft” failure).
Soft errors are those which must be triggered multiple times within a
specified time window to be considered fatal. Soft errors are managed
using a digital high-pass error counter with a trigger threshold.

The masterStatus flag is a configurable indication as determined by the
user. This flag is asserted as a result of any asserted alert signals
which the user has enabled.

The hierarchy of BIT and Status fields and signals is depicted here:

	BITstatus Field

	masterFail

	hardwareError

	hardwareBIT Field

	powerError

	hardwarePowerBIT Field

	inpPower

	inpCurrent

	inpVoltage

	fiveVolt

	threeVolt

	twoVolt

	twoFiveRef

	sixVolt

	grdRef

	environmentalError

	hardwareEnvironmentalBIT Field

	pcbTemp

	comError

	comBIT Field

	serialAError

	comSerialABIT Field

	transmitBufferOverflow

	receiveBufferOverflow

	framingError

	breakDetect

	parityError

	serialBError

	comSerialBBIT Field

	transmitBufferOverflow

	receiveBufferOverflow

	framingError

	breakDetect

	parityError

	softwareError

	*softwareBIT Field *

	algorithmError

	softwareAlgorithmBIT Field

	initialization

	overRange

	missedIntegrationStep

	dataError

	softwareDataBIT Field

	calibrationCRCError

	magAlignOutOfBounds

	masterStatus

	hardwareStatus

	hardwareStatus Field

	unlocked1PPS (N/A)

	unlockedInternalGPS (N/A)

	noDGPS (N/A)

	unlockedEEPROM

	comStatus

	comStatus Field

	noExternalGPS (Default)

	softwareStatus

	softwareStatus Field

	algorithmInitialization (enabled by default)

	highGain (enabled by default)

	attitudeOnlyAlgorithm

	turnSwitch

	sensorStatus

	sensorStatus Field

	overRange (enabled by default)

Master BIT and Status (BITstatus) Field

The BITstatus field is the global indication of health and status of the
MTLT1 Series product (See Table 29). The LSB contains BIT information
and the MSB contains status information.

There are four intermediate signals that are used to determine when
masterFail and the hardware BIT signal are asserted. These signals are
controlled by various systems checks in software that are classified
into three categories: hardware, communication, and software.
Instantaneous soft failures in each of these four categories will
trigger these intermediate signals, but will not trigger the masterFail
until the persistency conditions are met.

There are four intermediate signals that are used to determine when the
masterStatus flag is asserted: hardwareStatus, sensorStatus, comStatus,
and softwareStatus. masterStatus is the logical OR of these intermediate
signals. Each of these intermediate signals has a separate field with
individual indication flags. Each of these indication flags can be
enabled or disabled by the user. Any enabled indication flag will
trigger the associated intermediate signal and masterStatus flag.

	MTLT1 BIT Status Field

	BITstatus
Field

	Bits

	Meaning

	Category

	masterFail

	0

	
0 = normal, 1 =
fatal error has

occurred

	BIT

	HardwareError

	1

	
0 = normal, 1=
internal

hardware error

	BIT

	comError

	2

	
0 = normal, 1 =
communication

error

	BIT

	softwareError

	3

	
0 = normal, 1 =
internal

software error

	BIT

	Reserved

	4:7

	N/A

	

	masterStatus

	8

	
0 = nominal, 1
= hardware,

sensor, com, or
software alert

	Status

	hardwareStatus

	9

	
0 = nominal, 1
= programmable

alert

	Status

	comStatus

	10

	
0 = nominal, 1
= programmable

alert

	Status

	softwareStatus

	11

	
0 = nominal, 1
= programmable

alert

	Status

	sensorStatus

	12

	
0 = nominal, 1
= programmable

alert

	Status

	Reserved

	13:15

	N/A

	

hardwareBIT Field

The hardwareBIT field contains flags that indicate various types of
internal hardware errors (See Table 30). Each of these types has an
associated message with low level error signals. The hardwareError flag
in the BITstatus field is the bit-wise OR of this hardwareBIT field.

	MTLT1 Hardware BIT Field

	hardwareBIT Field

	Bits

	Meaning

	Category

	powerError

	0

	0 = normal, 1 = error

	Soft

	environmentalError

	1

	0 = normal, 1 = error

	Soft

	reserved

	2:15

	N/A

	

hardwarePowerBIT Field

The hardwarePowerBIT field contains flags that indicate low level power
system errors (See Table 31). The powerError flag in the hardwareBIT
field is the bit-wise OR of this hardwarePowerBIT field.

	MTLT1 Hardware Power BIT Field

	hardwarePowe
rBIT
Field

	Bits

	Meaning

	Category

	inpPower

	0

	
0 = normal, 1 = | Soft

out of bounds |

	inpCurrent

	1

	
0 = normal, 1 = | Soft

out of bounds |

	inpVoltage

	2

	
0 = normal, 1 = | Soft

out of bounds |

	fiveVolt

	3

	
0 = normal, 1 = | Soft

out of bounds |

	threeVolt

	4

	
0 = normal, 1 = | Soft

out of bounds |

	twoVolt

	5

	
0 = normal, 1 = | Soft

out of bounds |

	twoFiveRef

	6

	
0 = normal, 1 = | Soft

out of bounds |

	sixVolt

	7

	
0 = normal, 1 = | Soft

out of bounds |

	grdRef

	8

	
0 = normal, 1 = | Soft

out of bounds |

	Reserved

	9:15

	N/A

	

hardwareEnvironmentalBIT Field

The hardwareEnvironmentalBIT field contains flags that indicate low
level hardware environmental errors (See Table 32). The
environmentalError flag in the hardwareBIT field is the bit-wise OR of
this hardwareEnvironmentalBIT field.

	MTLT1 Hardware Environment BIT Field

	hardwareEnvi
ronmentalBIT
Field

	Bits

	Meaning

	Category

	pcbTemp

	0

	
0 = normal, 1 =

out of bounds

	Soft

	Reserved

	9:15

	N/A

	

comBIT Field

The comBIT field contains flags that indicate communication errors with
external devices (See Table 33). Each external device has an associated
message with low level error signals. The comError flag in the BITstatus
field is the bit-wise OR of this comBIT field.

	MTLT1 COM BIT Field

	comBIT Field

	Bits

	Meaning

	Category

	serialAError

	0

	0 = normal, 1 = error

	Soft

	serialBError

	1

	N/A

	

	Reserved

	2:15

	N/A

	

comSerialABIT Field

The comSerialABIT field (See Table 34) contains flags that indicate low
level errors with external serial port A (the user serial port). The
serialAError flag in the comBIT field is the bit-wise OR of this
comSerialABIT field.

	MTLT1 Serial Port A BIT Field

	
**comSerialABI

T Field**

	Bits

	Meaning

	Category

	transmitBufferO
verflow

	0

	0 = normal, 1 =
overflow

	Soft

	receiveBufferOv
erflow

	1

	0 = normal, 1 =
overflow

	Soft

	framingError

	2

	0 = normal, 1 =
error

	Soft

	breakDetect

	3

	0 = normal, 1 =
error

	Soft

	parityError

	4

	0 = normal, 1 =
error

	Soft

	Reserved

	5:15

	N/A

	

softwareBIT Field

The softwareBIT field contains flags that indicate various types of
software errors (See Table 36). Each type has an associated message with
low level error signals. The softwareError flag in the BITstatus field
is the bit-wise OR of this softwareBIT field.

	MTLT1 Softrware BIT Field

	softwareBIT Field

	Bits

	Meaning

	Category

	algorithmError

	0

	0 = normal, 1 = error

	Soft

	dataError

	1

	0 = normal, 1 = error

	Soft

	Reserved

	2:15

	N/A

	

softwareAlgorithmBIT Field

The softwareAlgorithmBIT field contains flags that indicate low level
software algorithm errors (See Table 37). The algorithmError flag in the
softwareBIT field is the bit-wise OR of this softwareAlgorithmBIT field.

	MTLT1 Software Algorithm BIT Field

	
**SoftwareAlgo

rithmBIT Field**

	Bits

	Meaning

	Category

	initialization

	0

	0 = normal, 1 =
error during
algorithm
initialization

	Hard

	overRange

	1

	0 = normal, 1 =
fatal sensor
over-range

	Hard

	missedNavigatio
nStep

	2

	0 = normal, 1 =
fatal hard
deadline missed
for navigation

	Hard

	Reserved

	3:15

	N/A

	

softwareDataBIT Field

The softwareDataBIT field contains flags that indicate low level
software data errors (See Table 38). The dataError flag in the
softwareBIT field is the bit-wise OR of this softwareDataBIT field.

	MTLT1 Software Data BIT Field

	SoftwareData
BIT
Field*

	Bits

	Meaning

	Category

	
calibrationCRCE

rror

	0

	
0 = normal, 1 =
incorrect CRC

on calibration
EEPROM data or

data has been
compromised by

a WE command.

	Hard

	magAlignOutOfBo
unds

	N/A

	
Parameter not
implemented in

this software
version

	N/A

	Reserved

	2:15

	N/A

	

hardwareStatus Field

The hardwareStatus field contains flags that indicate various internal
hardware conditions and alerts that are not errors or problems (See
Table 39). The hardwareStatus flag in the BITstatus field is the
bit-wise OR of the logical AND of the hardwareStatus field and the
hardwareStatusEnable field. The hardwareStatusEnable field is a bit mask
that allows the user to select items of interest that will logically
flow up to the masterStatus flag.

	MTLT1 Hardware Status BIT Field

	hardwareStatus
Field*

	Bits

	Meaning

	unlocked1PPS

	0

	0 = not asserted, 1 =
asserted

	unlockedInternalGPS

	1

	0 = not asserted, 1 =
asserted

	noDGPS

	2

	0 = DGPS lock, 1 = no
DGPS

	unlockedEEPROM

	3

	
0=locked, WE
disabled, 1=unlocked,

WE enabled

	Reserved

	4:15

	N/A

comStatus Field

The comStatus field contains flags that indicate various external
communication conditions and alerts that are not errors or problems (See
Table 40). The comStatus flag in the BITstatus field is the bit-wise OR
of the logical AND of the comStatus field and the comStatusEnable field.
The comStatusEnable field is a bit mask that allows the user to select
items of interest that will logically flow up to the masterStatus flag.

	MTLT COM Status BIT Field

	comStatus Field

	Bits

	Meaning

	noExternalGPS

	0

	N/A

	Reserved

	1:15

	N/A

softwareStatus Field

The softwareStatus field contains flags that indicate various software
conditions and alerts that are not errors or problems (See Table 41).
The softwareStatus flag in the BITstatus field is the bit-wise OR of the
logical AND of the softwareStatus field and the softwareStatusEnable
field. The softwareStatusEnable field is a bit mask that allows the user
to select items of interest that will logically flow up to the
masterStatus flag.

	MTLT1 Software Status Field

	softwareStatus
Field*

	Bit*

	Meaning

	algorithmInit

	0

	
0 = normal, 1 = the
algorithm is in

initialization mode

	highGain

	1

	0 = low gain mode, 1
high gain mode

	attitudeOnlyAlgorithm

	2

	
0 = navigation state
tracking, 1 =

attitude only state
tracking

	turnSwitch

	3

	
0 = off, 1 = yaw rate
greater than

turnSwitch threshold

	Reserved

	4:15

	N/A

sensorStatus Field

The sensorStatus field contains flags that indicate various internal
sensor conditions and alerts that are not errors or problems (See Table
42). The sensorStatus flag in the BITstatus field is the bit-wise OR of
the logical AND of the sensorStatus field and the sensorStatusEnable
field. The sensorStatusEnable field is a bit mask that allows the user
to select items of interest that will logically flow up to the
masterStatus flag.

	MTLT1 Sensor Status Field

	sensorStatus Field

	Bits

	Meaning

	overRange

	0

	0 = not asserted, 1 = asserted

	Reserved

	1:15

	N/A

Configuring the Master Status

The masterStatus byte and its associated programmable alerts are
configured using the Read Field and Write Field command as described in
Section 8, Advanced Commands. Table 43 shows the definition of the bit
mask for configuring the status signals.

	MTLT1 Master Status Byte Configuration Fields

	configuration
field

	field ID

	Valid
Values

	**Description*
*

	
hardwareStatusE

nable

	0x0010

	Any

	
Bit mask of
enabled

hardware status
signals

	comStatusEnable

	0x0011

	Any

	
Bit mask of
enabled

communication
status signals

	
softwareStatusE

nable

	0x0012

	Any

	
Bit mask of
enabled

software status
signals

	
sensorStatusEna

ble

	0x0013

	Any

	
Bit mask of
enabled sensor

status signals

hardwareStatusEnable Field

This field is a bit mask of the hardwareStatus field (see BIT and status
definitions). This field allows the user to determine which low level
hardwareStatus field signals will flag the hardwareStatus and
masterStatus flags in the BITstatus field. Any asserted bits in this
field imply that the corresponding hardwareStatus field signal, if
asserted, will cause the hardwareStatus and masterStatus flags to be
asserted in the BITstatus field.

comStatusEnable Field

This field is a bit mask of the comStatus field (see BIT and status
definitions). This field allows the user to determine which low level
comStatus field signals will flag the comStatus and masterStatus flags
in the BITstatus field. Any asserted bits in this field imply that the
corresponding comStatus field signal, if asserted, will cause the
comStatus and masterStatus flags to be asserted in the BITstatus field.

softwareStatusEnable Field

This field is a bit mask of the softwareStatus field (see BIT and status
definitions). This field allows the user to determine which low level
softwareStatus field signals will flag the softwareStatus and
masterStatus flags in the BITstatus field. Any asserted bits in this
field imply that the corresponding softwareStatus field signal, if
asserted, will cause the softwareStatus and masterStatus flags to be
asserted in the BITstatus field.

sensorStatusEnable Field

This field is a bit mask of the sensorStatus field (see BIT and status
definitions). This field allows the user to determine which low level
sensorStatus field signals will flag the sensorStatus and masterStatus
flags in the BITstatus field. Any asserted bits in this field imply that
the corresponding sensorStatus field signal, if asserted, will cause the
sensorStatus and masterStatus flags to be asserted in the BITstatus
field.

Appendix A. Mechanical Specifications

	MTLT1 Series Outline Drawing

[image: image25]

[image: image26]

Appendix C. Sample Packet-Parser Code

Overview

This appendix includes sample code written in ANSI C for parsing packets
from data sent by the MTLT1 Series Tilt Systems. This code can be used
by a user application reading data directly from the MTLT1 Series
product, or perhaps from a log file.

The sample code contains the actual parser, but also several support
functions for CRC calculation and circular queue access.:

	process_memsic_packet – for parsing out packets from a queue.
Returns these fields in structure ACEINNA_PACKET (see below). Checks
for CRC errors

	calcCRC – for calculating CRC on packets.

	Initialize - initialize the queue

	AddQueue - add item in front of queue

	DeleteQueue - return an item from the queue

	peekWord - for retrieving 2-bytes from the queue, without popping

	peekByte – for retrieving a byte from the queue without popping

	Pop - discard item(s) from queue

	Size – returns number of items in queue

	Empty – return 1 if queue is empty, 0 if not

	Full - return 1 if full, 0 if not full

The parser will parse the queue looking for packets. Once a packet is
found and the CRC checks out, the packet’s fields are placed in the
ACEINNA_PACKET structure. The parser will then return to the caller. When
no packets are found the parser will simply return to the caller with
return value 0.

The ACEINNA_PACKET stucture is defined as follows:

typedef struct memsic_packet

{

unsigned short packet_type;

char length;

unsigned short crc;

char data[256];

} ACEINNA_PACKET;

Typically, the parser would be called within a loop in a separate
process, or in some time triggered environment, reading the queue
looking for packets. A separate process might add data to this queue
when it arrives. It is up to the user to ensure circular-queue integrity
by using some sort of mutual exclusion mechanism within the queue access
functions.

Code listing

#include <stdio.h>

/* buffer size */

#define MAXQUEUE 500

/*

* circular queue

*/

typedef struct queue_tag

{

int count;

int front;

int rear;

char entry[MAXQUEUE];

} QUEUE_TYPE;

/*

* ACEINNA packet

*/

typedef struct memsic_packet

{

unsigned short packet_type;

char length;

unsigned short crc;

char data[256];

} ACEINNA_PACKET;

QUEUE_TYPE circ_buf;

/***

* FUNCTION: process_memsic_packet looks for packets in a queue

* ARGUMENTS: queue_ptr: is pointer to queue to process

* result: will contain the parsed info when return value is 1

* RETURNS: 0 when failed.

* 1 when successful

***/

int process_memsic_packet(QUEUE_TYPE *queue_ptr, ACEINNA_PACKET
*result)

{

unsigned short myCRC = 0, packetCRC = 0, packet_type = 0, numToPop=0,
counter=0;

char packet[100], tempchar, dataLength;

if(Empty(queue_ptr))

{

return 0; /* empty buffer */

}

/* find header */

for(numToPop=0; numToPop+1<Size(queue_ptr) ;numToPop+=1)

{

if(0x5555==peekWord(queue_ptr, numToPop)) break;

}

Pop(queue_ptr, numToPop);

if(Size(queue_ptr) <= 0)

{

/* header was not found */

return 0;

}

/* make sure we can read through minimum length packet */

if(Size(queue_ptr)<7)

{

return 0;

}

/* get data length (5th byte of packet) */

dataLength = peekByte(queue_ptr, 4);

/* make sure we can read through entire packet */

if(Size(queue_ptr) < 7+dataLength)

{

return 0;

}

/* check CRC */

myCRC = calcCRC(queue_ptr, 2,dataLength+3);

packetCRC = peekWord(queue_ptr, dataLength+5);

if(myCRC != packetCRC)

{

/* bad CRC on packet – remove the bad packet from the queue and return
*/

Pop(queue_ptr, dataLength+7);

return 0;

}

/* fill out result of parsing in structure */

result->packet_type = peekWord(queue_ptr, 2);

result->length = peekByte(queue_ptr, 4);

result->crc = packetCRC;

for(counter=0; counter < result->length; counter++)

{

result->data[counter] = peekByte(queue_ptr, 5+counter);

}

Pop(queue_ptr, dataLength+7);

return 1;

}

/***

* FUNCTION: calcCRC calculates a 2-byte CRC on serial data using

* CRC-CCITT 16-bit standard maintained by the ITU

* (International Telecommunications Union).

* ARGUMENTS: queue_ptr is pointer to queue holding area to be CRCed

* startIndex is offset into buffer where to begin CRC calculation

* num is offset into buffer where to stop CRC calculation

* RETURNS: 2-byte CRC

***/

unsigned short calcCRC(QUEUE_TYPE *queue_ptr, unsigned int startIndex,
unsigned int num) {

unsigned int i=0, j=0;

unsigned short crc=0x1D0F; //non-augmented inital value equivalent to
augmented initial value 0xFFFF

for (i=0; i<num; i+=1) {

crc ^= peekByte(queue_ptr, startIndex+i) << 8;

for(j=0;j<8;j+=1) {

if(crc & 0x8000) crc = (crc << 1) ^ 0x1021;

else crc = crc << 1;

}

}

return crc;

}

/***

* FUNCTION: Initialize - initialize the queue

* ARGUMENTS: queue_ptr is pointer to the queue

***/

void Initialize(QUEUE_TYPE *queue_ptr)

{

queue_ptr->count = 0;

queue_ptr->front = 0;

queue_ptr->rear = -1;

}

/***

* FUNCTION: AddQueue - add item in front of queue

* ARGUMENTS: item holds item to be added to queue

* queue_ptr is pointer to the queue

* RETURNS: returns 0 if queue is full. 1 if successful

***/

int AddQueue(char item, QUEUE_TYPE *queue_ptr)

{

int retval = 0;

if(queue_ptr->count >= MAXQUEUE)

{

retval = 0; /* queue is full */

}

else

{

queue_ptr->count++;

queue_ptr->rear = (queue_ptr->rear + 1) % MAXQUEUE;

queue_ptr->entry[queue_ptr->rear] = item;

retval = 1;

}

return retval;

}

/***

* FUNCTION: DeleteQeue - return an item from the queue

* ARGUMENTS: item will hold item popped from queue

* queue_ptr is pointer to the queue

* RETURNS: returns 0 if queue is empty. 1 if successful

***/

int DeleteQueue(char *item, QUEUE_TYPE *queue_ptr)

{

int retval = 0;

if(queue_ptr->count <= 0)

{

retval = 0; /* queue is empty */

}

else

{

queue_ptr -> count–;

*item = queue_ptr->entry[queue_ptr->front];

queue_ptr->front = (queue_ptr->front+1) % MAXQUEUE;

retval=1;

}

return retval;

}

/***

* FUNCTION: peekByte returns 1 byte from buffer without popping

* ARGUMENTS: queue_ptr is pointer to the queue to return byte from

* index is offset into buffer to which byte to return

* RETURNS: 1 byte

* REMARKS: does not do boundary checking. please do this first

***/

char peekByte(QUEUE_TYPE *queue_ptr, unsigned int index) {

char byte;

int firstIndex;

firstIndex = (queue_ptr->front + index) % MAXQUEUE;

byte = queue_ptr->entry[firstIndex];

return byte;

}

/***

* FUNCTION: peekWord returns 2-byte word from buffer without popping

* ARGUMENTS: queue_ptr is pointer to the queue to return word from

* index is offset into buffer to which word to return

* RETURNS: 2-byte word

* REMARKS: does not do boundary checking. please do this first

***/

unsigned short peekWord(QUEUE_TYPE *queue_ptr, unsigned int index) {

unsigned short word, firstIndex, secondIndex;

firstIndex = (queue_ptr->front + index) % MAXQUEUE;

secondIndex = (queue_ptr->front + index + 1) % MAXQUEUE;

word = (queue_ptr->entry[firstIndex] << 8) & 0xFF00;

word |= (0x00FF & queue_ptr->entry[secondIndex]);

return word;

}

/***

* FUNCTION: Pop - discard item(s) from queue

* ARGUMENTS: queue_ptr is pointer to the queue

* numToPop is number of items to discard

* RETURNS: return the number of items discarded

***/

int Pop(QUEUE_TYPE *queue_ptr, int numToPop)

{

int i=0;

char tempchar;

for(i=0; i<numToPop; i++)

{

if(!DeleteQueue(&tempchar, queue_ptr))

{

break;

}

}

return i;

}

/***

* FUNCTION: Size

* ARGUMENTS: queue_ptr is pointer to the queue

* RETURNS: return the number of items in the queue

***/

int Size(QUEUE_TYPE *queue_ptr)

{

return queue_ptr->count;

}

/***

* FUNCTION: Empty

* ARGUMENTS: queue_ptr is pointer to the queue

* RETURNS: return 1 if empty, 0 if not

***/

int Empty(QUEUE_TYPE *queue_ptr)

{

return queue_ptr->count <= 0;

}

/***

* FUNCTION: Full

* ARGUMENTS: queue_ptr is pointer to the queue

* RETURNS: return 1 if full, 0 if not full

***/

int Full(QUEUE_TYPE *queue_ptr)

{

return queue_ptr->count >= MAXQUEUE;

}

Appendix D. Sample Packet Decoding

	Example payload from Angle Data Packet 2 (A2)

[image: appendix chart1]

	Example payload from Scaled Data Packet 1 (S1)

[image: appendix chart2]

Warranty and Support Information

Customer Service

As a Aceinna customer you have access to product support services, which
include:

	Single-point return service

	Web-based support service

	Same day troubleshooting assistance

	Worldwide Aceinna representation

	Onsite and factory training available

	Preventative maintenance and repair programs

	Installation assistance available

Contact Directory

United States: Phone: 1-408-964-9700 (8 AM to 5 PM PST)

Fax: 1-408-854-7702 (24 hours)

Email: techsupportca@memsic.com

Non-U.S.: Refer to website
www.memsic.com [http://www.memsic.com]

Return Procedure

Authorization

Before returning any equipment, please contact Aceinna to obtain a
Returned Material Authorization number (RMA).

Be ready to provide the following information when requesting a RMA:

	Name

	Address

	Telephone, Fax, Email

	Equipment Model Number

	Equipment Serial Number

	Installation Date

	Failure Date

	Fault Description

	Will it connect to NAV-VIEW?

Identification and Protection

If the equipment is to be shipped to Aceinna for service or repair,
please attach a tag TO THE EQUIPMENT, as well as the shipping
container(s), identifying the owner. Also indicate the service or repair
required, the problems encountered and other information considered
valuable to the service facility such as the list of information
provided to request the RMA number.

Place the equipment in the original shipping container(s), making sure
there is adequate packing around all sides of the equipment. If the
original shipping containers were discarded, use heavy boxes with
adequate padding and protection.

Sealing the Container

Seal the shipping container(s) with heavy tape or metal bands strong
enough to handle the weight of the equipment and the container.

Marking

Please write the words, “*FRAGILE, DELICATE INSTRUMENT*” in
several places on the outside of the shipping container(s). In all
correspondence, please refer to the equipment by the model number, the
serial number, and the RMA number.

Return Shipping Address

Use the following address for all returned products:

Aceinna, Inc.

3180 De La Cruz Blvd, #130

Santa Clara, CA 95054

Attn: RMA Number (XXXXXX)

Warranty

The Aceinna product warranty is one year from date of shipment.

[image: image29]

Index

 _images/image17.png
=lo/x|

Generat | Aances | 1T Confguaton | Externaag | A Data| Port Usage | it Aarm |

Field Modify Current Value Value toset

BaudRate [

PacketType [

Packet Rate r

Orentation [~

GPSBaudRate [

Gpsprotocol [

Get AL Values Set Values

& Temporary reset after reboot)

© Permanent (saved after reboot)

Satus: Suceess owe |

_images/image18.png
Unit Configuration

Genera Advnces | T Contguration | Externaag | A Data| Port Usage | Tt Aarm |

Feia Modty Current vaiue Vatse toset
User Beador Swtches
| Oreeyimege T
0 e ags [
0 use s 3
0 Satonayvawtosk I
O restrtOverfange. I
O Dynamic Motion 2

XHardIron Bias [~
YHardronBias [~
Softiron Scale Ratio [
Softiron Angle
Heading Track Offset [~

Tum Switch Threshotd [~

Fitter)z Accel ™
Fitter Y Accel [~

Fitter Rate sensor [~

RollOfset [~

oitcn neeas

[0.00000 =

~=lolx|

s

& Temporary reset after reboot)

© Permanent (saved after reboot)

Status:

Success

=

_images/image15.png
serd
sers

sers

sers

1943 2330
0300010003071c 4929
s6s2 4287

=10lx]|

5555
5555
5555
5555
5555
5555
5555
5555
5555
5555
5555
5555
5555
5555
5555

e
136
136
136
136
136
136
136
136
136
136
136
136
136
136

02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

000a£££2000000000308
0003££e2000000000308
0010££d0000000000308
0009££49000000000308
000e££d1000000000308
000b£2de000000000308
0008£27000000000308
000e££ce000000000308
0005£d0000000000308
0017££cd000000000308
000£££d9000000000308
0009££43000000000308
0013££c£000000000308
0005£2b000000000308
000d£2de000000000308

Oebz.
18

0622
2124
as01
aszs
3906
seze
anle
scaz
s6c.
2c1a
aza1
e3es

_images/image16.jpeg
2 Packet Statistics

Packets Received:
CRC Failures

vz Packet Rate (Hz):

Elapsed Tie:

Rt

assaz

10290

02423

e

_images/image2.png
AXAXs

View of the MTLT looking
fromthe top of the unit

+¥-Axis

+2-Axis goes out the bottom of the unit

_images/image20.png
it Configuration

Geneat| Advance | 17 Caiuration| Externat nag | A ata| Pt sage Tt Aarm |

Field

it Alarm Selector

Roll Upper Atarm Limit

Roll Lower Alarm Limit

RollHysteresis

Pitch Upper Alarm Limit

Pitch Lower Alarm Limit

Pitch Hysteresis

Cone Angle Alarm Limit

Cone Angle Hysteresis

Modify Current Value

e i i i i e |

B

JATAGTAE

Value toset

Gependent Axis -

10.00
10.00
2.00 =
10.00
10.00
2.00 =
10.00
2. =

.00

~=lolx|

GetALV:

§

Set Values

& Temporary reset after reboot)

© Permanent (saved after reboot)

Status:

Success

Done.

_images/image19.png
=lo/x|

Genea| dvanced 1T Confiuration | eternt Hag | A ata| Pt sage | Tt Aarm |

By enabling a given status BIT, the signal willbe included in the
comesponding category BIT and in the master status BIT sent by the DMU

Field Modify Current Value Enable / Disable

Hardware Status Enable [~
0O Unlocked 1PPS

0O Unlocked Intemal GPS
0 NoDGPs

0O Unlocked EEPROM

0O oATFail

O Exthag Fail

0O Interal AirData

i U o U o U

Software Staus Enable [
W Algorithm Ini
M tiigh Gain

0 Atttude Only Al
B Tum Switeh

0 No Mag Heading ref
0 No GPS track ref

izing

ininininin

Sensor Status Enable [
W Sensor Over Range

0 Mag Alignment Invalid
0 Mag SN Match Fail

0 No AirData Aiding

mininin

Comm Status Enable [~
0O No Extemal GPS
0O No Extemal Mag.
0 No External AirData

Get AL Values Set Values

& Temporary reset after reboot)

mimin

© Permanent (saved after reboot)

Satus: Suceess owe |

_images/image2.jpeg

_images/image21.jpeg

_images/image22.png
Alarm Region

rollLowerAlarmLimit /

_images/image12.jpeg

_images/image13.jpeg
Data Source:

LIVE Mods (from DHU)

[Flayback Mode (From Fie]

_images/image10.jpeg

_images/image11.jpeg

_images/image14.jpeg

_images/image23.png
Alarm Region

nav.xhtml

 Table of Contents

 		
 <no title>

 		
 Aceinna SAEJ1939 protocol

 		
 Introduction

 		
 Manual Overview

 		
 Overview of the MTLT Series Inertial Systems

 		
 Connections

 		
 Connections

 		
 Power Input and Power Input Ground

 		
 Serial Data Interface

 		
 Alarm

 		
 Installation and Operation of NAV-VIEW

 		
 NAV-VIEW Computer Requirements

 		
 Install NAV-VIEW

 		
 Connections

 		
 Setting up NAV-VIEW

 		
 Data Recording

 		
 Data Playback

 		
 Raw Data Console

 		
 Packet Statistics View

 		
 Unit Configuration

 		
 Advanced Configuration

 		
 Bit Configuration

 		
 Tilt alarm

 		
 Theory of Operation

 		
 MTLT Series Default Coordinate System

 		
 Advanced Settings

 		
 4.2 Dynamic MTLT Theory of Operation

 		
 4.2.1 MTLT1xxD Advanced Settings

 		
 4.2.2 MTLT1xxD Built-In Test

 		
 Tilt Alarm (Independent vs. Cone Angle)

 		
 Application Guide

 		
 Introduction

 		
 Equipment Leveling and lockout

 		
 Aerial Work Platform Safety

 		
 Land Vehicle

 		
 Programming Guide

 		
 General Settings

 		
 Number Formats

 		
 Packet Format

 		
 Packet Header

 		
 Packet Type

 		
 Payload Length

 		
 Payload

 		
 16-bit CRC-CCITT

 		
 Messaging Overview

 		
 Communicating with the MTLT1 Series

 		
 Link Test.

 		
 Ping Command

 		
 Ping Response

 		
 Echo Command

 		
 Echo Response

 		
 Interactive Commands

 		
 Get Packet Request

 		
 Algorithm Reset Command

 		
 Algorithm Reset Response

 		
 Error Response

 		
 Output Packets (Polled)

 		
 Identification Data Packet

 		
 Version Data Packet

 		
 Test 0 (Detailed BIT and Status) Packet

 		
 Output Packets (Polled or Continuous)

 		
 Angle Data Packet 6 (Default Data)

 		
 Angle Data Packet 7

 		
 Advanced Commands

 		
 Configuration Fields

 		
 Continuous Packet Type Field

 		
 Digital Filter Settings

 		
 Orientation Field

 		
 User Behavior Switches

 		
 Tilt alarm

 		
 Commands to Program Configuration

 		
 Write Fields Command

 		
 Set Fields Command

 		
 Read Fields Command

 		
 Read Fields Response

 		
 Get Fields Command

 		
 Get Fields Response

 		
 Advanced BIT

 		
 Built In Test (BIT) and Status Fields

 		
 Master BIT and Status (BITstatus) Field

 		
 hardwareBIT Field

 		
 hardwarePowerBIT Field

 		
 hardwareEnvironmentalBIT Field

 		
 comBIT Field

 		
 comSerialABIT Field

 		
 softwareBIT Field

 		
 softwareAlgorithmBIT Field

 		
 softwareDataBIT Field

 		
 hardwareStatus Field

 		
 comStatus Field

 		
 softwareStatus Field

 		
 sensorStatus Field

 		
 Configuring the Master Status

 		
 hardwareStatusEnable Field

 		
 comStatusEnable Field

 		
 softwareStatusEnable Field

 		
 sensorStatusEnable Field

 		
 Appendix A. Mechanical Specifications

 		
 Appendix C. Sample Packet-Parser Code

 		
 Overview

 		
 Code listing

 		
 Appendix D. Sample Packet Decoding

 		
 Warranty and Support Information

 		
 Customer Service

 		
 Contact Directory

 		
 Return Procedure

 		
 Authorization

 		
 Identification and Protection

 		
 Sealing the Container

 		
 Marking

 		
 Return Shipping Address

 		
 Warranty

_images/image26.png

_images/image1.png
NACEINNA

POWERFUL SENSING SOLUTIONS

_images/image27.png

_images/image24.png
Alarm state (+/-1: riggered, 0: no alarm)

Alarm Turns.

o N

1
omtuns | Hystreis SN
o N A
Alarm Tums A‘t"" Roll/PitchAngle (degree)
-1 on Limit

_images/image25.png

_images/image3.png
Node

Request DA=255 SA<25¢

address daim DA=255 SA=x

CeimDAS2SE SA= 2

‘address claim DA=255 SA=w

Network:

_images/image32.jpeg
MEM%>

_images/image28.png

_images/image29.png
LI

ili
7.50 enE7 +0.0: ¢
$2.50~" 100
4X }3.30 THRU: - <
| L

T ; =
BN ‘

43 [ﬁ% ''''' | € T

enE7 +0.02
— 250" {50

_images/image4.png
‘Address claim SA=x Name A

Address Claim SA=y Name B

_images/image6.jpeg

_images/image7.jpeg
Unit Connected

_static/ajax-loader.gif

_images/image8.jpeg

_images/image9.jpeg
£ Log toFile

(e Logeing Rate

& Enginerring Data @ FractionalRate | & £y samps Rate

© HexData
 Raw Packets [Hex]

€ 172 5ample Rate
€ tsasample Rate
1710 Sample Rate
Test Duration 17100 Sample Rate:
Days

 sampesisacons
Hours savlesbond

1 E
1 =

Hinutes Seconds/sample

Secands

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

